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1 Rhizobium leguminosarum expression data

Table S1 provides the details of the gene expression data employed to generate the gene coexpression
networks for R. leguminosarum. We used 54 different microarrays obtained under 18 conditions (first
column). The second column indicates the growth condition of the bacteria; for example, “7 days pea,
1 day PI" stands for inoculation of seven days old pea plant sampled one day post-inoculation. The
last column indicates the type of sample, which can be “Free-living" (bacteria grown in liquid culture),
“Rhizosphere" (bacteria isolated from the fraction of soil in contact with the plant), or “Bacteroid"
(bacteria that have infected the plant and differentiated). This data has been published previously
[8, 6, 3] but never analysed jointly.

Microarrays (channels) Growth condition Type
kk21 (Cy3), kk41 (Cy5), kk45 (Cy3) Succinate NH4 Free-living

Jay10 (Cy5), Jay11 (Cy5), Jay12 (Cy3) Glucose Glutamate Free-living
Jay10 (Cy3), Jay11 (Cy3), Jay12 (Cy5) Glucose Aspartate Free-living
kk46 (Cy3), kk48 (Cy3), kk50 (Cy3) Pyruvate NH4 Free-living

Vinoy43 (Cy5), Vinoy44 (Cy5), Vinoy45 (Cy3) Pyruvate NH4 Hespertin Free-living
Ade7 (Cy3), Ade9 (Cy3), Ade18 (Cy5) Pyruvate NH4 IAA Free-living
Ade8 (Cy5), Ade11 (Cy3), Ade15 (Cy5) Pyruvate NH4 Kinetin Free-living
kk39 (Cy5), kk43 (Cy5), kk51 (Cy3) Inositol NH4 Free-living

Vinoy26 (Cy5), Vinoy31 (Cy5), Vinoy34 (Cy3) 7 days pea, 1 day PI Rhizosphere
Vinoy27 (Cy5), Vinoy32 (Cy5), Vinoy35 (Cy3) 7 days pea, 3 day PI Rhizosphere
Vinoy28 (Cy5), Vinoy33 (Cy5), Vinoy36 (Cy3) 7 days pea, 7 day PI Rhizosphere
Vinoy29 (Cy5), Vinoy37 (Cy5), Vinoy39 (Cy3) 14 days pea, 1 day PI Rhizosphere
Vinoy30 (Cy5), Vinoy38 (Cy5), Vinoy40 (Cy3) 21 days pea, 1 day PI Rhizosphere

kk67 (Cy5), kk71 (Cy3), kk72 (Cy5) 1 week pea, 7 days PI Bacteroid
kk65 (Cy5), kk68 (Cy3), kk69 (Cy3) 1 week pea, 15 days PI Bacteroid
kk73 (Cy5), kk74 (Cy3), kk75 (Cy5) 1 week pea, 21 days PI Bacteroid

kk64 (Cy5), Vinoy22 (Cy3), Vinoy24 (Cy3) 1 week pea, 28 days PI Bacteroid
kk70 (Cy5), kk60 (Cy3), kk61 (Cy5) Vetch seed, 28 days PI Bacteroid

Table 1: Rhizobium leguminosarum gene expression data description
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2 Spearman correlation networks for R. leguminosarum

We construct a Spearman correlation matrix R from the pre-processed gene expression matrix M∗ by
computing the Spearman correlation between every pair of gene expression vectors. We threshold R to
construct two networks NR(dS) and NR(dP ) with edge density dS and dP , respectively. Similarly to
the networks obtained using Pearson correlation NP (dS) and NP (dP ), the ones based on Spearman
correlation have a larger and less densely connected largest connected component than NS(dS) and
NS(dP ). The summaries of these two networks can be found in Table S2. We evaluate the Spearman
networks using STRING as described in the paper. The results obtained are higher than the obtained
by the Pearson correlation networks but lower than those using signed distance correlation. Table S3
and Figure S1 show the results of the STRING evaluation for the Spearman networks.

Network Number
of Edges

Number of
vertices in LCC

Edge density
LCC * 100

Global clustering
coeff. LCC

NR(dS) 313,348 6,664 1.41 0.515
NR(dP ) 406,977 6,831 1.34 0.515

Table 2: Summaries of Spearman networks for R. leguminosarum
LCC Denotes largest connected component.

Network All of STRING
information (C)

Only coexpression
information (C†)

All information
except coexpression (C‡)

NR(dS) 8,936,856 2,715,646 7,994,795
NR(dP ) 10,488,856 3,003,020 9,422,007

Table 3: Evaluation of the biological content of the Spearman networks with STRING

dS dP dS dP dS dP

Figure 1: Scores obtained for the R. leguminosarum gene coexpression networks using STRING. All panels show
the score for the different networks in the y-axis, and the network density on the x-axis. The scores are the
result of adding up the confidence scores with all evidence (C), only coexpression evidence (C†) and everything
excluding coexpression (C‡) from STRING associated with the edges in the networks, each computed using
different of information. The black box plots correspond to the scores obtained by 30 random networks. Blue
circles, red triangles and yellow squares represent signed distance correlation, Pearson correlation and Spearman
correlation, respectively.
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3 Gene coexpression network analysis for the study of Yeast RNA-Seq data

We use our signed correlation pipeline to generate a gene coexpression network from a dataset obtained
using RNA-Seq of yeast (Saccharomyces cerevisiae) expressing pathways designed to increase ATP or
GTP consumption. We obtain all the raw-counts for experiment E-MTAB-5174 in Expression Atlas [5]
and remove the genes with zero expression variance. The final dataset which we feed into our pipeline
includes the expression of 6,930 genes across 209 samples.

Following the pipeline described in the methodology section, we pre-process the data and obtain
the distance correlation matrix D, the Pearson correlation matrix P , the signed correlation matrix S,
and the matrix |P | of absolute values of the Pearson correlation. Table S4 and Figure S2 show the
summaries and distribution of these matrices.

Correlation matrix Min 1st q Median 3rd q Max Mean
D 0.00 0.26 0.40 0.57 1.00 0.42
|P | 0.00 0.13 0.30 0.51 1.00 0.34
P -0.96 -0.29 0.00 0.31 1.00 0.01
S -0.97 -0.39 -0.05 0.40 1.00 0.01

Table 4: Summaries for the correlation matrices of the Yeast dataset

A

B

Figure 2: Density plots of the distribution of the values of the correlation matrices from the Yeast dataset.
Panel A shows the distribution of values in the distance correlation matrix (blue) and of the absolute value
of the values in the Pearson correlation matrix (red). Panel B shows the distribution of values in the signed
distance correlation matrix (blue) and of the values in the Pearson correlation matrix (red).
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We estimate the optimal threshold values θ∗ and θ? to construct the unweighted gene coexpres-
sion networks AS(θ

∗) and AP (θ
?) using COGENT [2]. We follow our pipeline to calculate the self-

consistency of the networks. We adjust the similarity score by subtracting the network density. Fig S3
shows the variation of the score function for the correlation matrices across different edge densities.
For both signed distance correlation and Pearson correlation, there is a edge density value for which
the score function reaches its maximum. This value is dS = 0.0131 for the signed distance correlation
(score of 0.746, which is achieved for θ∗= 0.84) and dP = 0.0146 for the Pearson correlation (score of
0.733, which is achieved for θ? = 0.81). The results show that the use of signed distance correlation
offers more stable networks. However, the difference between the performance of the two studied corre-
lations is lower than the observed in the study of R. leguminosarum. We analyse the networks NS(dS)
(edge density dS) and NS(dP ) (edge density dP ) retrieved from S, the networks NP (dS) (edge density
dS) and NP (dP ) (edge density dP ) retrieved from P , and the networks NR(dS) (edge density dS) and
NR(dP ) (edge density dP ) obtained using Spearman correlation. The summaries of the six networks
are detailed in Table S5.

Yeast networks score functionYeast networks score function

Figure 3: Score function values for different edge densities using the Yeast dataset. The blue line with circles
shows the scores obtained using signed distance correlation and the red line with triangles those obtained using
Pearson correlation. The dotted lines indicate the position of the highest score point for each line. This value is
0.746 for the signed distance correlation network (giving edge density 0.0131 which is achieved with θ∗ = 0.84)
and 0.733 for the Pearson correlation network (giving edge density 0.0146 which is achieved with θ? = 0.81).

We evaluate the six networks using STRING [9]. We use the three different sets of confidence scores:
obtained using all the evidence in STRING (C), obtained using only coexpression information (C†),
and obtained using all the evidence except the coexpression information (C‡). Table S6 and Figure S4
present the results. For all the studied cases, the results obtained using the signed distance correlation
networks are the highest. Unlike with the R. leguminosarum dataset, the Pearson correlation networks
perform better than the Spearman correlation networks. In fact, the results for the signed distance
correlation and Pearson correlation are almost identical (as in the case of the self-consistency study).
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Network Number of Edges Number of
vertices in LCC

Edge density
LCC * 100

Global clustering
coeff. LCC

NS(dS) 314,771 3,987 3.91 0.651
NS(dP ) 350,549 4,154 4.02 0.607
NP (dS) 314,771 4,497 3.07 0.431
NP (dP ) 350,549 4,615 3.25 0.516
NR(dS) 314,771 5,060 2.39 0.578
NR(dP ) 350,549 5,117 2.44 0.578

Table 5: Summaries of yeast networks. LCC denotes largest connected component.

These results suggest that a high similarity in the self-consistency of the networks may imply a similarity
in the amount of biological information that the networks are able to capture.

We generate 60 random networks of which 30 have edge density dS and the other 30 have edge
density dP . We evaluate these networks with the STRING information and find that the six net-
works in Table S5 outperform all of them. The highest difference to random is obtained for signed
distance correlation networks when using only coexpression information (C†) to evaluate the networks;
for NS(dS) the score is 17.69 times higher than the mean score obtained by random networks with
matching densities.

Network All of STRING
information (C)

Only coexpression
information (C†)

All information
except coexpression (C‡)

NS(dS) 36,941,775 26,763,561 21,135,268
NP (dS) 36,610,618 26,706,960 20,873,493
NR(dS) 23,557,830 15,143,418 15,889,580

RE dS
4,412,687
± 43,162

1,512,629
± 24,840

3,741,742
± 36,649

NS(dP ) 39,013,837 27,935,541 22,642,609
NP (dP ) 38,609,494 27,822,217 22,310,410
NR(dP ) 25,395,572 16,143,245 17,243,212

RE dP
4,916,218
± 50,112

1,678,870
± 24,502

4,174,943
± 46,196

Table 6: Evaluation of the biological content of the networks with STRING. RE indicates the expected (mean)
result based on random networks with the indicated edge density and its standard deviation.

We conclude that the Yeast gene coexpression networks obtained using signed distance correlation
are more stable and recover more biological information than those based on Pearson correlation or
Spearman correlation.
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Figure 4: Scores obtained for the yeast gene coexpression networks using STRING. All panels show the score for
the different networks in the y-axis, and the network density on the x-axis. The scores are the result of adding
up the confidence scores from STRING associated with the edges in the networks. Each plot corresponds to a
different set of values: using all evidence C, only coexpression evidence C† and excluding coexpression evidence
C‡. The black box plots correspond to the scores obtained by 30 random networks. Blue circles, red triangles and
yellow squares represent signed distance correlation, Pearson correlation and Spearman correlation, respectively.
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4 Gene coexpression network analysis for the study of human liver single-cell
RNA-Seq data

We use our signed correlation pipeline to generate a gene coexpression network from a dataset obtained
using single-cell RNA-Seq of human liver cells [4]. The original dataset measures the expression of
15,353 genes in 1,622 cells.

This dataset is considerably different from the previous two, both in the data itself – the measure-
ments correspond to different cells instead of to different samples – and the organism – while both
R. leguminosarum and S. cerevisiae are unicellular organisms, humans are not. Hence, a considerable
proportion of genes are not expressed in the studied cells (for example, specific genes in neurons will not
be expressed in cells from liver). For this reason, we employ a different pre-processing strategy in this
case. In the first place, we quantile-normalise the data [1] to make the measurements in the different
cells comparable. Afterwards, as in [7], we identify the “non-changing genes”. These genes are those for
which the difference between its highest and lowest expression value (“expression difference”) is lower
than the median of all the expression differences calculated for each gene, and in addition for which the
mean expression signal between samples is lower than the median of all the expression signals calcu-
lated for each gene. After removing the “non-changing genes" we obtain an already quantile-normalised
dataset with information for 8,585 genes. We do not apply more preprocessing steps to this dataset
(we do not quantile normalise again the data and we do not set the lowest expressed genes from each
sample to the lowest expression value).

We calculate the distance correlation matrix (D), the Pearson correlation matrix (P ), the signed
correlation matrix (S), and the matrix |P | of absolute values of the Pearson correlation. Table S7 and
Figure S5 show the summaries and distribution of these matrices.

Correlation matrix Min 1st q Median 3rd q Max Mean
D 0.00 0.03 0.04 0.05 0.88 0.04
|P | 0.00 0.01 0.02 0.03 0.91 0.02
P -0.63 -0.02 0.00 0.02 0.91 0.00
S -0.71 -0.03 -0.02 0.04 0.88 0.00

Table 7: Summaries for the correlation matrices of the single-cell dataset from human liver

We estimate the optimal threshold values θ∗ and θ? to construct unweighted gene coexpression
networks AS(θ

∗) and AP (θ
?) using COGENT [2]. We follow a similar pipeline as the one employed

in the case of R. leguminosarum to calculate and adjust the self-consistency of the networks. The
only difference is that as the input expression matrix is already quantile-normalised and low expressed
genes have already been filtered out, in each of the 25 iterations the pre-processing steps are omitted.
Figure S6 shows the variation of the score function for the correlation matrices across different edge
densities. In both cases, there is a edge density value for which the score function reaches its maximum.
This value is dS = 0.00009 for the signed distance correlation (score of 0.896, which is achieved for
θ∗ = 0.44) and dP = 0.000089 for the Pearson correlation (score of 0.781, which is achieved for θ?

= 0.43). The results show that for all tested edge densities, the use of signed distance correlation
offers more stable networks. We analyse the networks NS(dP ) (edge density dS) and NS(dP ) (edge
density dP ) retrieved from S, the networks NP (dS) (edge density dS) and NP (dP ) (edge density dP )
retrieved from P . We also construct two networks from a correlation matrix obtained using Spearman
correlation: NR(dS) (edge density dS) and NR(dP ) (edge density dP ). The summaries of the six
networks are detailed in Table S8. We note that the largest connected components of the networks
contain a lower proportion of the total vertices than in previous datasets. The networks obtained
using signed distance correlation have a smaller and denser largest connected component than those
obtained using Pearson correlation. In contrast to the two previous datasets, the largest connected
component of the networks obtained using Spearman correlation is smaller and denser than those from
signed distance correlation and Pearson correlation networks; however, the signed distance correlation
networks still have the highest global clustering coefficient.

Similarly as for the two previous datasets, we evaluate the constructed networks using three sets of
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Figure 5: Density plots of the distribution of the values of the correlation matrices from the Yeast dataset.
Panel A shows the distribution of values in the distance correlation matrix (blue) and of the absolute value
of the values in the Pearson correlation matrix (red). Panel B shows the distribution of values in the signed
distance correlation matrix (blue) and of the values in the Pearson correlation matrix (red).

Network Number of Edges Number of vertices
in LCC

Edge density
LCC * 100

Global clustering
coeff. LCC

NS(dS) 3320 212 14.61 0.87
NS(dP ) 3279 210 14.71 0.87
NP (dS) 3320 219 12.42 0.83
NP (dP ) 3279 216 12.62 0.83
NR(dS) 3320 161 25.54 0.81
NR(dP ) 3279 160 25.54 0.81

Table 8: Summaries of single cell human liver networks.
LCC denotes largest connected component.

confidence values obtained from STRING. We also evaluate 60 random networks with edge densities
dS (30 networks) and dP (30 networks). Table S9 and Figure S7 show the results. The networks
obtained using Spearman correlation get a higher score than the Pearson ones when evaluating them
using exclusively the coexpression information from STRING (C†), whereas the situation is the reverse
in the two other scenarios (C and C‡). Overall, the networks obtained using signed distance correlation
NS(dS) and NS(dP ) retrieve a higher score than their competitors based on either Pearson or Spear-
man correlation. This result suggest that among the assessed methods, signed distance correlation
captures the broadest range of biological information, which makes it a tool of choice to generating
gene coexpression networks. All the analysed networks obtain a higher score than the random ones.
The highest difference to random is obtained for signed distance correlation networks when using only
coexpression information (C†) to evaluate the networks; for NS(dP ) the score is 92.92 times higher
than the mean score obtained by random networks with matching densities; for NS(dS) it is even 94.28
than the corresponding mean score for the random networks.
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Figure 6: Plot of the score function values for different edge densities using the human liver single-cell RNA-
Seq dataset. The blue line shows the scores obtained using signed distance correlation and the red line those
obtained using Pearson correlation. The dotted lines indicate the position of the highest score point for each
line. This value is 0.896 for the signed distance correlation network (giving edge density 9.01e−05 which is
achieved with θ∗ = 0.44) and 0.781 for the Pearson correlation network (giving edge density 8.90e−05 which is
achieved with θ∗ = 0.43).

Network All of STRING
information (C)

Only coexpression
information (C†)

All information
except coexpression (C‡)

NS(dS) 703,908 615,363 675,788
NP (dS) 651,712 563,881 624,554
NR(dS) 607,793 574,426 595,682

RE dS
22,398
± 2,434

6,527
± 971

19,593
± 2,430

NS(dP ) 696,299 609,262 668,927
NP (dP ) 645,745 560,246 619,247
NR(dP ) 603,929 570,977 592,232

RE dP
223,778
± 2,687

6,557
± 1,064

19,605
± 2,552

Table 9: Evaluation of the biological content of the networks with STRING. RE indicates the expected (mean)
result based on random networks with
the indicated edge density and its standard deviation.

We conclude that the liver gene coexpression networks obtained using signed distance correlation
are more stable and show recover more biological information than those based on Pearson correlation
and that our signed distance correlation method is suitable for studying single cell gene expression
data.
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Figure 7: Scores obtained for the single-cell human liver gene coexpression networks using STRING. All panels
show the score for the different networks in the y-axis, and the network density on the x-axis. The scores are
the result of adding up the confidence scores from STRING associated with the edges in the networks. Each
plot corresponds to a different set of values: using all evidence C, only coexpression evidence C† and excluding
coexpression evidence C‡. The black box plots correspond to the scores obtained by 30 random networks. Blue
circles, red triangles and yellow squares represent signed distance correlation, Pearson correlation and Spearman
correlation, respectively.
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5 Network evaluation using information from STRING

We use the interactions between proteins reported in STRING to evaluate the amount of biological
information that the constructed networks capture. The association evidence in STRING is categorized
into independent channels, weighted, and integrated, resulting in a confidence score for all recorded
protein interactions. For each organism, we use three different sets of interactions and confidence scores:
the overall confidence score C provided by STRING, the C† obtained attending only to coexpression
information, and the C‡ obtained excluding all coexpression information.

The recomputing of the each of the scores was done using the python script located on the STRING
webpage (Figure 8), which was accessed on the 20th of April 2020 using the URL https://string-db.
org/cgi/help.pl?&subpage=faq%23how-are-the-scores-computed. The script can be found at the
end of this section. We commented out lines 96–98, 100–102 in the script to compute the C† values;
and the line 99 in the script to obtain the C‡ values.

Figure 8: STRING FAQ webpage. Accessed on the 20th of April 2020. The content describes how the STRING
combines the scores of the different channels. At the end of the section there is the link to the script which was
modified and used in this work.
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1 from __future__ import print_function
2 import os
3 import sys
4

5 ##########################################################
6 ## This script combines all the STRING ’s channels subscores
7 ## into the final combined STRING score.
8 ## It uses unpacked protein.links.full.xx.txt.gz as input
9 ## which can be downloaded from the download subpage:

10 ## https :// string -db.org/cgi/download.pl
11 ##########################################################
12

13 input_file = "9606. protein.links.full.v10.5. txt"
14

15 if not os.path.exists(input_file):
16 sys.exit("Can’t locate input file %s" % input_file)
17

18 prior = 0.041
19

20 def compute_prior_away(score , prior):
21

22 if score < prior: score = prior
23 score_no_prior = (score - prior) / (1 - prior)
24

25 return score_no_prior
26

27 header = True
28 for line in open(input_file):
29

30 if header:
31 header = False
32 continue
33

34 l = line.split ()
35

36 ## load the line
37

38 (protein1 , protein2 ,
39 neighborhood , neighborhood_transferred ,
40 fusion , cooccurrence ,
41 homology ,
42 coexpression , coexpression_transferred ,
43 experiments , experiments_transferred ,
44 database , database_transferred ,
45 textmining , textmining_transferred ,
46 initial_combined) = l
47

48 ## divide by 1000
49

50 neighborhood = float(neighborhood) / 1000
51 neighborhood_transferred = float(neighborhood_transferred) / 1000
52 fusion = float(fusion) / 1000
53 cooccurrence = float(cooccurrence) / 1000
54 homology = float(homology) / 1000
55 coexpression = float(coexpression) / 1000
56 coexpression_transferred = float(coexpression_transferred) / 1000
57 experiments = float(experiments) / 1000
58 experiments_transferred = float(experiments_transferred) / 1000
59 database = float(database) / 1000
60 database_transferred = float(database_transferred) / 1000
61 textmining = float(textmining) / 1000
62 textmining_transferred = float(textmining_transferred) / 1000
63 initial_combined = int(initial_combined)
64

65 ## compute prior away
66
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67 neighborhood_prior_corrected = compute_prior_away (neighborhood ,
prior)

68 neighborhood_transferred_prior_corrected = compute_prior_away (
neighborhood_transferred , prior)

69 fusion_prior_corrected = compute_prior_away (fusion , prior)
70 cooccurrence_prior_corrected = compute_prior_away (cooccurrence ,

prior)
71 coexpression_prior_corrected = compute_prior_away (coexpression ,

prior)
72 coexpression_transferred_prior_corrected = compute_prior_away (

coexpression_transferred , prior)
73 experiments_prior_corrected = compute_prior_away (experiments , prior

)
74 experiments_transferred_prior_corrected = compute_prior_away (

experiments_transferred , prior)
75 database_prior_corrected = compute_prior_away (database , prior)
76 database_transferred_prior_corrected = compute_prior_away (

database_transferred , prior)
77 textmining_prior_corrected = compute_prior_away (textmining , prior)
78 textmining_transferred_prior_corrected = compute_prior_away (

textmining_transferred , prior)
79

80 ## then , combine the direct and transferred scores for each category:
81

82 neighborhood_both_prior_corrected = 1.0 - (1.0 - neighborhood_prior_corrected) *
(1.0 - neighborhood_transferred_prior_corrected)

83 coexpression_both_prior_corrected = 1.0 - (1.0 - coexpression_prior_corrected) *
(1.0 - coexpression_transferred_prior_corrected)

84 experiments_both_prior_corrected = 1.0 - (1.0 - experiments_prior_corrected) *
(1.0 - experiments_transferred_prior_corrected)

85 database_both_prior_corrected = 1.0 - (1.0 - database_prior_corrected) * (1.0
- database_transferred_prior_corrected)

86 textmining_both_prior_corrected = 1.0 - (1.0 - textmining_prior_corrected) *
(1.0 - textmining_transferred_prior_corrected)

87

88 ## now , do the homology correction on cooccurrence and textmining:
89

90 cooccurrence_prior_homology_corrected = cooccurrence_prior_corrected * (1.0 -
homology)

91 textmining_both_prior_homology_corrected = textmining_both_prior_corrected * (1.0
- homology)

92

93 ## next , do the 1 - multiplication:
94

95 combined_score_one_minus = (
96 (1.0 - neighborhood_both_prior_corrected) *
97 (1.0 - fusion_prior_corrected) *
98 (1.0 - cooccurrence_prior_homology_corrected) *
99 (1.0 - coexpression_both_prior_corrected) *

100 (1.0 - experiments_both_prior_corrected) *
101 (1.0 - database_both_prior_corrected) *
102 (1.0 - textmining_both_prior_homology_corrected) *
103 1)
104

105 ## and lastly , do the 1 - conversion again , and put back the prior *exactly once*
106

107 combined_score = (1.0 - combined_score_one_minus) ## 1- conversion
108 combined_score *= (1.0 - prior) ## scale down
109 combined_score += prior ## and add prior.
110

111 ## round
112

113 combined_score = int(combined_score * 1000)
114 print(protein1 , protein2 , combined_score)

Listing 1: Combine subscores script
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