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Abstract

To predict novel protein-protein interactions, the protein interaction networks are upcast by
assigning SCOP structural classifications to as many of the interacting proteins as possible.
Two probabilistic models, the frequency-based approach and the odds ratio-based approach are
developed, in which both a maximum likelihood method and a Bayesian method with H.pylori
as the prior and Yeast as the test data are implemented. Our models are also applied to the
predicting of protein structure. In addition, we calculate the network statistics of the protein
interaction networks of Yeast and H.pylori, demonstrating that these follow the expected pattern
for small world graphs.
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Chapter 1

Introduction

Many biological characteristics arise from the complex interactions between the numerous con-
stituents in the cell, such as proteins, DNA, RNA, and small molecules [12]. The interactions
of proteins are part of this complicated puzzle. Proteins interact to maintain various biological
functions in cells. These interactions can be experimentally detected by many techniques in-
cluding high-throughput Yeast two hybrid screens (abbreviated as Y2H) and protein complex
purification techniques using mass spectrometry, correlated messenger RNA expression profiles
and genetic interaction data [54]. Data about protein-protein interactions are publicly available
from several databases such as DIP [75], MIPS [41] and IntAct [26]. The goal of my project is
to predict Protein-protein interactions (abbreviated as PPI) as the correct inference of missing
or unknown interactions will improve the understanding of the biological mechanism and hence
benefit drug design.

PPI are affected by many factors including subcellular location, function and structure.
Subcellular location affects PPI because proteins are less likely to interact with those which
are far away or even unreachable. Function is also important because proteins frequently bind
together in pairs or larger complexes to take part in a biological process. Proteins which interact
therefore may share the same or similar functions [61]. The specificity of the protein interaction
implies that the structure of the protein domain will affect the interaction [2]. Therefore, it is
possible to predict, to some extent, the subcellular location, protein function , protein structure
or even protein interactions based on a combination of the other factors [14, 48]. A number of
computational approaches have been proposed to predict PPI from various aspects. These in

silico methods are described in Chapter 2.

In this project we study PPI using a statistical approach. Probabilistic models are con-
structed to analyze biological information. We develop both a frequentist and a Bayesian
approach taking advantage of prior information from H.pylori to predict PPI in S. cerevisiae.
The model provides estimates of the probability of interaction, given that the structures of two
interacting proteins are known.

To validate our models, earlier datasets are used to predict later datasets. The result shows
that the Bayesian method performs well when not many interactions are known. The use of
prior information from H.pylori can only improve the prediction in the early stage. After more
PPI are available for training, the maximum likelihood method gives better estimates. The pre-
diction does not give promising results, indicating that better models are needed. Our models
can in principle predict not only the unknown PPI but also the structures of proteins, which
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are both important. The method uses cross-species inference and can use not only structural
information but also other factors such as functional classes.

Furthermore, if proteins are nodes and their interactions are edges, protein-protein interac-
tion networks (abbreviated as PIN) can be viewed as networks. It is thought that PIN display
the small world behaviour, which means that networks are highly clustered with short path
lengths [59]. There are studies suggesting a relationship between the network structure on the
one hand and the functional role and the subcellular location of proteins on the other hand.
Functional classes appear as segregated subnetworks [78]. Meanwhile, whether the PIN are
scale-free is still not clear [64, 73]. To investigate the network structure of PPI, we calculate
some networks statistics [4] and we evaluate the fit to the theoretical Watt-Strogatz model of
small worlds [5–7]. A better understanding of network structure should improve our prediction
methods [1] and provide insights on less studied organisms.

Future work is aimed at extending the model considering network structure and also at
integrating more biological information. More details of future work are included in Chapter 7.

1.1 Overview

Chapter 2 Here we survey the background of my project, including the experimental tech-
niques to detect PPI and also some recently proposed computational methods for pre-
dicting unknown interactions. The high false-positive rate and low coverage from the
experiments are reported. In addition, we describe some network characteristics for bet-
ter understanding of PIN.

Chapter 3 A probabilistic model, the frequency-based approach, is constructed for PIN and
two statistical methods, the maximum likelihood method and the Bayesian method are
used in the estimation. The data matrix and the frequency tables are built and the
statistical model are described in detail.

Chapter 4 Another probabilistic model based on odds ratios is developed that the maximum
likelihood method and the Bayesian method are applied as well. We estimate the probabil-
ities of odds ratios between present and absent interactions for each class-class categories.

Chapter 5 Our method is applied to the Yeast data (H.pylori as prior in the Bayesian method).
The evaluation of the performance is carried out by comparing χ2 statistics of two meth-
ods. The smaller the χ2 statistic is, the better the model fitting. Also, our approaches
are applied to predict protein structures.

Chapter 6 We explain how to incorporate the structure of PIN in our model, how to calculate
some network statistics namely vertex degree, clustering coefficients and the shortest path
length, for both Yeast and H.pylori. The small world behaviour in PIN indicates the
potential to improve our model using network structure.

Chapter 7 My future work includes five aspects, the handling of experimental errors, inte-
grating multiple sources of data, incorporating the clustering effect in the model, studying
network modelling in more detail and applying our model to various datasets. Each aspect
is given a brief description.
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Chapter 2

Background

2.1 Protein-Protein Interactions

A protein is a complex, high molecular weight organic compound that consists of amino acids
joined by peptide bonds. Proteins are essential to the structure and function of all living cells
and viruses. The definition of a protein-protein interaction refers to the physical binding, dock-
ing, between proteins. Proteins interact with other proteins to achieve biological functions that
maintain life. In particular, proteins transmit regulatory signals throughout the cell, catalyze a
tremendous number of chemical reactions, and are critical for the stability of numerous cellular
structures.

Many methods exist for the detection of protein-protein interactions. These various meth-
ods can be roughly defined to be experimentally or computationally derived. Some of them are
mixed approaches to cover as many as possible interactions.

2.1.1 Experimental approaches

There are two major approaches, Yeast two-hybrid screening methods, and affinity purification
coupled with mass spectroscopy. Other techniques include the use of gene interactions before
inferring protein interactions and the study of protein 3-D structures for docked complexes.

• Yeast two-hybrid screening [31, 69]

Figure 2.1: Yeast two-hybrid screening
(Picture from http://www.biology.duke.edu/model-system/ymsg/index.html)
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The Yeast two-hybrid technique uses two protein domains that have specific functions: a
DNA-binding domain (BD), that is capable of binding to DNA, and an activation domain
(AD), that is capable of activating transcription of the DNA (see Figure 2.1). Two fusion
proteins of interests, bait and prey, are designed one with BD and one with AD. If two
proteins interact, AD and BD will be in close distance to activate transcription, so that
the report gene is transcribed and its product or the activity can be detected. Thus, it is
possible to detect whether or not two proteins interact.

• Affinity purification coupled with mass spectrometry [53]
PPI can be analyzed directly by precipitation of a tagged bait, a testing protein, followed
by mass spectrometric identification of its binding partners.

Figure 2.2: Schematic representation of the affinity purification method
A. Structure of the TAP-tag. B. To remove unspecifically bound proteins, two affinity purifi-
cations are performed to reduce the affinities of igG and calmodulin binding peptide (CBP).
(Picture from A. Bauer & B. Kuster, 2003 [9]).

First, as in Figure 2.2, the ”TAP-tagged” protein is expressed in cells, maintaining the
expression of the fusion protein at its natural level, to form a complex with the endogenous
components. Along with associated partners, it retrieved via interaction of the Protein A
tag with the igG that are fixed on agarose beads.

Secondly, in order to remove proteins that are unspecifically bound to the column, the
retrieved protein complex is released by proteinase cleavage using the TEV (Tobacco etch
virus). After washing, the TEV protease is added to release the bound material. In
the second affinity step, the complex is immobilized to calmodulin coated beads via the
calmodulin binding peptide (CBP) tag. This step removes the TEV protease and further
contaminants that may present. Finally, the resulting complexes can be identified by mass
spectrometry [22].

• Correlated mRNA expression
Messenger RNA (mRNA) expression levels are measured and clustering analysis is used
to group genes according to the similarity of their expression across different experimental
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conditions and genetic backgrounds. Genes within the same group are assumed to mediate
related biological functions and to encode physically interacting proteins. By studying the
mRNA level, it is possible to detect protein complexes. The disadvantages are that the
method is a relatively inaccurate predictor of direct protein interactions, and it depends
on the clustering method used. [38, 39]

• Synthetic lethality
Two mutations are synthetically lethal if cells with either of the single mutation are viable
but cells with both mutations are inviable. Such mutant genes are often functionally re-
lated and their encoded proteins may also interact. Through the detection of the synthetic
lethality, it is possible to identify putative PPI. [66]

• Docking (3-D)
In 3-D docking we model their structures, the properties of contact surfaces, forces in-
volved in the interaction, as well as kinetic and thermodynamic parameters. Through the
computational simulations, the most likely structure of PPI can be predicted. [24, 58]

Enormous amounts of data have been generated, but unfortunately all these techniques suf-
fer from experimental error [40]. The popular Yeast two-hybrid screening method, one of the
high throughput approaches, is most affected. There have been many attempts to assess the
reliability of different experimental methods [15, 43].

As most of the PPI-detecting methods are labour-intensive, the development of in silico

methods is much in demand.

2.1.2 Computational approaches

A number of in silico approaches for predicting either physical interactions or functional rela-
tionships between proteins have been developed. Genomic context analysis in the prediction
of protein-protein interactions includes several approaches, such as gene fusion [18, 39], gene

neighborhood [28, 47], phylogenetic profiles [29, 50] and similarity of phylogenetic trees [49, 70].
These methods use the evolutionary relationship of genes as well as proteins to detect potential
protein-protein interactions. Alternatively, based on the protein-domain information and phys-
ical interaction, probabilistic models are built to predict unknown interactions [62]. Recently,
more statistical methods were applied to predict unknown interaction [16, 46, 67, 68] and to
integrate multiple sources of data [30, 32, 36].

Review of the current approaches

Given a known protein-protein interaction, the ability to predict structured aspects of this
interaction would be of great biological value. Here we review some computational approaches
used for predicting protein interactions.

• Studies which focus on the protein domain level
Protein-domain information can be obtained from protein-domain family databases such
as PFAM [8]. A protein may contain one or more domains. The existing methods
calculate how often two domains are found on two interacting proteins to predict PPI.
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1. Domain counting [62]
For each domain pair a log-odds value compares its observed frequency with the
expected frequency from randomly distributed domains.

log-odds ratio = log
pij

pipj

where pij is the observed domain pair (i, j) among data, pi and pj are the frequency
of domain i and domain j in the data.

The log-odds ratio is a measure of over-represented domain pairs. The domain pair
with the highest log-odds ratio is inferred to be the binding pair in the two proteins.
Therefore, this protein pair is given a probability score that is equal to the highest
log-odds ratio of this domain pair. By setting up a threshold, the probability score
is dichotomized to predict the protein-protein interactions. The domain counting
method provides a probability score for each protein pair, and a way to detect the
probable binding domains.

The disadvantages of the domain counting method are, firstly, when it calculates
the log-odds value, other possible interacting domains are ignored. Secondly, it as-
sumes the independence of domain-domain interactions, though it has been observed
that some domains frequently coexist in a protein. Thirdly, the experimental error is
totally ignored. In addition, the incompleteness of data will seriously affect the result.

2. Maximum likelihood methods
An enhanced method based on the domain counting has been proposed by Deng el
al. [16]. It uses a maximum likelihood methods with the EM algorithm to estimate
the probability of interaction for every domain pair.

Here is a brief overview.

Data The protein-domain relationships, which can be obtained from PFAM and the
pairwise protein-protein interaction data

Method Let D1, · · · ,DM be M domains and P1, · · · , PN be N proteins. Sij is the
set of domain pairs between Pi and Pj . We put Pij = 1 if protein i interacts
with protein j, and Pij = 0 if protein i and protein j have no interaction. Then
let λmn = 1 indicate that domain m and domain n interact, and let λmn = 0
indicate that domain m and domain n have no interaction.

Two assumptions are made, namely independence between domain-domain in-
teractions and that the protein-protein interaction is based on the presence of
the interaction on at least one domain pair. Then we express the probability of
protein i interacting with protein j, Pr(Pij = 1), as

Pr(Pij = 1) = 1 −
∏

(m, n)∈Sij

(1 − λmn) .

To consider the experimental error from high-throughput experiments, both false
positives and false negatives are included in the model as the parameters.
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fP = Pr(Oij = 1|Pij = 0)

fN = Pr(Oij = 0|Pij = 1),

where Oij is the binary value for the observed interaction between protein i and
protein j.

Thus, the probability of for the observed protein-protein interaction is

Pr(Oij = 1) = Pr(Pij = 1)(1 − fN) + (1 − Pr(Pij = 1))fP .

The likelihood function, the probability of the whole observed data, is the prod-
uct of the probability of observing the presence/absence of all possible protein
pairs,

L =
∏

(Pr(Oij = 1))Oij (1 − Pr(Oij = 1))1−Oij .

The parameters to be estimated are (λmn, fP , fN ). Applying the EM algorithm,
the likelihood function is iterated to obtain λ̂mn, the estimate of the probability
that two domains (m, n) interact. The probability of the interaction happening
on a given protein pair is assumed to be the highest λ̂mn among all domain pairs
between two proteins. Hence, each protein pair is assigned a probability score.
With an appropriate threshold, the prediction of the protein-protein interaction
based on the observed interaction is established.

Results This method is then applied on 5719 PPI in Yeast. For a given specificity,
the maximum likelihood method outperforms the domain counting method, with
better sensitivity. As to the performance, it achieves specificity 42.5% and sen-
sitivity 77.6% by setting the threshold at 0.80. The probability model includes
the experiment error and hence makes the prediction more accurate as currently
available data have high false-positive rate and low coverage. Additionally, the
likelihood function considers the whole interactome at the same time to avoid a
local bias on λ̂mn.

Unfortunately, it is computationally expensive to carry out this operation on a
large number of domain pairs. Due to computational difficulties, only the local
maximum of the likelihood is obtained with prefixed (fP , fN ). In the later verifi-
cation, different initial values of λmn caused the estimates to vary greatly, which
shows the lack of robustness of the approach.

3. Random Shuffling [46]

This is a Monte Carlo approach, as follows.

Aim To predict the most likely pair of domains mediating a given protein interac-
tion; p-values are given to all potential domain superfamily pairs 1.

Data Pairwise PPI (such as the data from Yeast two-hybrid experiments), domain
superfamily - protein information (proteins are decomposed into one or several
domain superfamilies based on structural classification [44] ).

1Domains are grouped by SUPERFAMILY [23] and proteins in the same superfamily usually have the same
3D formation. Here a domain superfamily pair refers to two domains with their predicted superfamily.
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Method Given the experimental data, the expected number of contacts between a
given domain pair j across the entire proteome is Ej. The quantity Ej is cal-
culated based on the number of observed contacts, the total number of possible
domain-pair contacts within each protein pair, and also the experimental errors.
The total number of different possible contacts of the given domain pair j within
the proteome, Nj, is sum of the type j contacts for all protein pairs.

A measure, the odds ratio, of interaction for each domain superfamily pair j is
constructed below.

s(j) = log
Ej

∑

k 6=j(Nk − Ek)

(Nj − Ej)(
∑

k 6=j Ek)
.

It is assumed that the network of interactions between proteins remains fixed,
and that the number and the type of domain superfamilies in the observed data
remain unchanged. Now all domain superfamilies in the proteome are shuffled.
For n random shuffles, n odds ratios for the domain pair j are calculated as

s
(j)
1 , s

(j)
2 , · · · , s

(j)
n . By counting the number of times the simulated statistics ex-

ceed the observed statistics s
(j)
0 the p-value is obtained from the observed data

:

pj =
1

n
× (number of times that the statistics s

(j)
1 , s

(j)
2 , · · · , s(j)

n exceed s
(j)
0 ) .

The performance of the random shuffling approach is compared with the domain
counting method and the maximum likelihood method [16, 62]. Generally, their
accuracies are similar. When the number of potential contacts increases, the random
shuffling method outperforms the others.

Several factors may affect the prediction: firstly, the incompleteness of the data. In
addition, repeated domain superfamily pairs in a protein pair with different contacts
will receive same p-values that are undistinguishable. As there exists some gaps in
the sequence used for superfamily prediction, they are ignored in the analysis and
could lead to bias. The removal of proteins without superfamily assignment could
also cause a bias.

• Kernel methods [34]

Kernel-based methods handle the relationships among many ”items” by describing their
similarities as kernels. The nature of kernel matrices allows them to consider several char-
acteristics of protein pairs simultaneously. The integrated information should be of great
help when predicting protein-protein interactions.

Aim To classify unknown protein-protein interactions into a positive class (interacting
protein pairs) and a negative class (non-interacting protein pairs)

Data Any description helpful in inferring the interaction between proteins, such as amino
acid sequences, protein complex data, gene expression, known protein-protein inter-
actions, clustering coefficients of proteins
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Kernels The measure of similarity between two genes or proteins based on knowledge of
them. The data are included as a matrix of kernel similarity values.

Method All data representing the known relationship between every pair of proteins is
summarized as a matrix K produced by the kernel function. A kernel function is
a function that describes the similarity between two proteins in the corresponding
dataset.

Different kernel functions are designed for different types of data, including vectors,
strings, trees and graphs. Selected sources of data are expressed as kernel matrices
in which each element is the kernel between two proteins. Multiple matrices can be
integrated. The Support Vector Machine (SVM) is a binary classification algorithm
that classifies protein pairs as recorded in the kernel matrix, by a linear boundary.
The process of the classification is to maximize the distance between the positive and
the negative class by optimizing the coefficient of the boundary. Once the optimized
boundary is found, unknown PPI can be predicted.

Errors

Experimental errors are observed in the experimental approaches and thus also affect the pre-
diction based on the experimental data.

Recent work indicates that interactions found by experimental screens are far from complete,
with thousands to tens of thousands of interactions as yet unknown within Yeast [43, 65]. Among
the interactions in Yeast identified by different high throughput methods, only a small number
of them overlap and no method covers more than 60% of the proteins. The two main reasons
are the coverage and the false positive rate described as follows.

1. Each method is only able to detect a certain distribution of interactions. Different methods
cover protein interactions in certain functional categories [40]. Some methods only catch
those proteins from certain subcellular locations.

2. The false positive rate is high. In a comparison between the interactions identified by
different methods with a reference dataset (gold standard), the accuracy of the data from
Yeast two-hybrid and other experimental methods are less than 40% [40]. Deane et al. [15]
examined ∼ 8000 PPI of Yeast from a large and diverse collection by two computational
methods. They estimated that only 50% of them are reliable and only 3000 of them are
confident. Other estimates of false positive rates varied from 10 to 95% according to
different sources of PPI data [46]. Though the reference datasets might not be the true
ones, these diverse rates reveals the low reliability of the data.

An more accurate dataset can be obtained by selecting interactions at the intersections of
multiple methods. However, this greatly reduces the size due to low coverage and the high
diversity of the detected data by different methods [40].

2.1.3 Network characteristics

There is a series of studies which detect specific patterns of subgraphs in biological networks
including the transcription-regulation networks and the PIN, in which the nodes are genes,
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transcription factors or proteins and the edges are the interactions [10, 13, 57, 80]. In the
study of network motifs (frequently observed patterns) approaches exist to find out the rela-
tionship between the network motifs and functional modules [37]. The detection of network
motifs allows better inference of missing links [55]. Yet, the underlying reasons for the quantity
of different subgraph types, their propensity to form clusters, and their relationship with the
networks’ global organization remain poorly understood [71].

Basic network statistics, such as vertex degree, clustering coefficient and the shortest path
length, are common statistics used for describing networks. Here are their definitions.

Let G = (V,E) be a graph with vertex set V and edge set E, we write i ∼ j if {i, j} ∈ E

(here the edges are considered undirected.).

• The degree of vertex i is v(i) =
∑

j 6=i 1(i ∼ j).

• The clustering coefficient of i is

Ci =







0, if
∑

j 6=k 1(i ∼ j, i ∼ k) = 0P
j 6=k 1(i∼j∼k∼i)P
j 6=k 1(i∼j, i∼k) , otherwise.

The average clustering coefficient is then C = 1
|V |

∑

i∈V Ci.

• A path of length L from i to j is a collection of edges (kl, kl+1) ∈ E, where l = 1, · · · L−1
and k1 = 1, kL = j. The length of the shortest path between i and j is the smallest L

such that there is a path from i to j of length L.

Further insight into network structure would greatly benefit our understanding of the mech-
anism of biological interaction. The study of highly connected nodes (hub nodes) shows their
conserved property and implies the essential role in interacting with others [20]. Furthermore,
the modularity of networks reflects a potential hierarchical structure, in which the modules
reflect the existence of protein complexes in protein networks [21, 61]. Several network models
have been discussed such as the random network model, the scale-free model and the small-
world model [6, 59, 72, 73, 78]. The approach to understand real networks is still vague [76].
The underlying model for PIN is not clear due to the incompleteness of the networks and the
potential sampling bias [25, 60, 64, 79]. More details about the network statistics in PIN are
described in Chapter 6.

2.1.4 Data Sources

Several public databases (DIP, MIPS, IntAct, etc.) store experimental data of PPI [26, 41, 75].
The DIP, Database of Interacting Proteins 2, stores experimental determined interactions from
various sources. DIP also contains a high confidence core subset. The IntAct3 database from
EMBL-EBI provides numbers of PPI from small-scale experiments thought in general to be more
accurate than their high throughput counterparts. It also includes datasets from various species.

The datasets from different species are provided at different time points. Here are the two
datasets we analyzed in this project.

2http://dip.doe-mbi.ucla.edu/
3http://www.ebi.ac.uk/intact/index.jsp/
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DIP Yeast is the Yeast subset of DIP containing all the pairs of interacting proteins iden-
tified in the budding Yeast, Saccharomyces cerevisiae. There are 49 datasets provided
chronologically from 2001 to 2005 with 7800-17500 interactions each.

DIP H.pylori includes 1420 PPI from 710 proteins. The size of DIP H.pylori stays unchanged
from 2003 to 2005.

2.2 Classification of Proteins

The characteristics of proteins, including their 3D structures, functions, or subcellular loca-
tions, are useful information for understanding protein interactions [14]. To utilize the protein
structures for inferring PPI, a classification of protein structures was employed.

SCOP4, is a protein structure classification database with four hierarchical levels, Family,
Superfamily, Fold and Class [44]. Class, as the top level in SCOP, is based only on the presence
of different secondary structure elements (Table 2.1 & Figure 2.3). A SCOP assignment of a
protein is a protein structure successfully predicted by Superfamily [23]. Therefore, not all
proteins have SCOP assignments. In the DIP Yeast data that we downloaded, there are about
46% to 56% of proteins being successfully predicted by Superfamily and thus have structure
assignments. Multi-domain proteins that include domains of different structures are assigned
to more than one class. In this case, one protein may be described by multiple SCOP classes.

Table 2.1: The Class level in SCOP †

Class Description
a All α proteins
b All β proteins
c Alpha and beta proteins (α/β), mainly parallel beta sheets (β −α− β units)
d Alpha and beta proteins (α + β), mainly antiparallel beta sheets (segregated

α and β regions)
e α and β, folds consisting of two or more domains belonging to different classes
f Membrane and cell surface proteins and peptides, not including proteins in

the immune system
g Small proteins, usually dominated by metal ligand, heme, and/or disulfide

bridges

† http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.html

4Structural Classification of Proteins (http://scop.mrc-lmb.cam.ac.uk/scop/)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.3: Pictures (a) ∼ (g) represent 7 SCOP classes a ∼ g in Table 2.1
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Chapter 3

Frequency-based Approach

To predict PPI based on the experimental data of Yeast, we first propose a frequency-based
approach. This approach estimates the probability of a protein-protein interaction from the rel-
ative frequency of the binding between two specific SCOP classes. Assuming that the frequency
distribution of class-class interactions is known, the probabilistic model is constructed to obtain
the estimates of the probabilities. A maximum likelihood method and a Bayesian approach are
both used to obtain the estimates.

3.1 Data Matrix

In this project, the data of PPI are DIP Yeast and DIP H.pylori. For the n proteins ob-
served in the Yeast data, each protein i corresponds to a protein vector Ti that records all
interacting events tij as binary outcomes with other proteins j. The notation i ∽ j stands for
the undirected PPI between protein i and protein j, i.e. i ∽ j = j ∽ i. Self-interactions, i ∽ i,
are also included. To avoid repetition, the interaction i ∽ j or j ∽ i is treated as i ∽ j where
i ≤ j (in alphabetic order). The order of the binary outcome, tij, in the protein vector is sorted
by the superfamily classes that protein j belongs to.

Ti = (

a
︷ ︸︸ ︷

ti,1, ti,2, .

b
︷ ︸︸ ︷

.., ti,j , ..

abcdefg
︷ ︸︸ ︷

., ti,n ) tij =

{
1 if i ∽ j

0 if i ≁ j or i > j

The data matrix, D, is a square matrix of n protein vectors storing all the information of
the PPI. As the interactions are undirected, D is an upper triangular matrix.

D =








T1

T2
...

Tn








3.2 Frequency Table of Class Interactions

To focus on class interactions between 7 basic SCOP classes predicted by Superfamily, a fre-
quency table of class interactions is calculated from the data of PPI, with data matrix D. The
class-class interaction between SCOP class u and SCOP class v is expressed as u ↔ v and is
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undirected.

First, all possible class interactions from every protein interaction in D are identified. For
example, consider a protein x that interacts with a protein y, x ∽ y. If protein x is assigned
two SCOP classes, a and b, and protein y is assigned two classes, c and d, then four possible
class interactions, a ↔ c, a ↔ d, b ↔ c, b ↔ d, are observed.

Second, the number of each type of class interactions counted from all observed PPI are
calculated. Let F(i) = {superfamily class(es) of protein i},

F(i) ⊂ {a, b, c, d, e, f, g}

For example: if protein x belongs to three superfamily classes, a, b and c, then F(x) = {a, b, c}.

The combination of two classes from two interacting proteins is indexed by k, where their
relationships are expressed in Table 3.1. For example, if the SCOP class of one protein is b and
its interacting protein is assigned the SCOP class d, then this interaction is indexed as k = 10.
As the PPI are treated as undirected interactions, the inverse case, one protein is d and its
interacting protein is assigned the SCOP class b, is also indexed as k = 10.

Table 3.1: The relationships be-
tween index k and SCOP classes

k a b c d e f g
a 1 2 3 4 5 6 7
b 2 8 9 10 11 12 13
c 3 9 14 15 16 17 18
d 4 10 15 19 20 21 22
e 5 11 16 20 23 24 25
f 6 12 17 21 24 26 27
g 7 13 18 22 25 27 28

The frequency of observed class interactions between two classes is nk, in which the lower
index k refers to which two classes are considered. (see Table 3.1 for the index k and Table 3.2
for the arrangement of nk). For the category k, its frequency is calculated by summing all PPI
that one interacting protein is in the corresponding row/column and another protein is in the
corresponding column/row, and is as follows.

nk =
∑

i

∑

j

tij1(∃ u, v : u ∈ F(i), v ∈ F(j), u, v are in category k)

where 1 is the indicator function.

Due to the nature of the available data, only present PPI are observed. The information
about proteins which do not interact is very limited, which makes statistical inference more
challenging.
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Table 3.2: The frequency table of SCOP class inter-
actions

a b c d e f g total

a n1 n2 n3 n4 n5 n6 n7

b n8 n9 n10 n11 n12 n13

c n14 n15 n16 n17 n18

d n19 n20 n21 n22

e n23 n24 n25

f n26 n27

g n28

total n.

3.3 Parameters

The parameter to be estimated is the vector of probabilities with the element being Pk, the
probability of a protein-protein interaction that its class-class interaction is index as k, one of
the 28 types of class-class interaction.

θ = {Pk| k = 1, 2, · · · , 28}

In total, 7 SCOP classes create 28 different class-class interactions. Thus, 28 probabilities need
to be estimated.

3.4 Maximum Likelihood Estimator

The maximum likelihood method is a common method used in estimating parameters in proba-
bilistic models. The maximum likelihood estimates of the probabilities can be directly obtained
from the data. The DIP Yeast datasets from different years are used in this project. The first
step is to construct the likelihood function based on a probabilistic model. Then the estimates
of the probabilities are the values that maximise the likelihood.

Likelihood function The likelihood is comprised of the probabilities from all class interactions
decomposed into PPI. The aim is to find out the estimates of probabilities of the 28 class
interactions. The estimates will allow further inference on protein interactions. Here, the
probability model of class interactions is assumed to be a multinomial model in which the
observations of PPI are assumed to be independent. In this model, the 28 probabilities of
class interactions, Pk ∈ [0, 1] are parameters. The sample size is the number of all class
interactions from the observed data. The sum of probabilities of all 28 class interactions
equals to 1,

28∑

k=1

Pk = 1 .

Recall that θ are probabilities of class-class interactions, t are the observed PPI, k indicates
the type of two SCOP classes in the class-class interactions.

θ = (P1, P2, · · · , P28)
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Pk ≥ 0, k = 1, 2, · · · , 28

The likelihood can be expressed as products of probabilities of 28 class interactions with
their ”observed” class interactions as powers,

Likelihood = L(θ, t)

=
n.!

∏28
k=1 nk!

Pn1
1 Pn2

2 · · ·Pn28
28

Under this probability model, it is assumed that each protein interaction is independent
of all others and each class-class interaction is also independent of all others.

Maximum Likelihood Estimate We compute the log-likelihood and the first partial deriva-
tive to obtain the maximum likelihood estimator (MLE). (See for example [52])

θ̂mle = arg max
θ

L(θ, t)

Therefore,

θ̂mle = P̂k =
nk

n.
(3.1)

=
total of observed class interactions indexed as k

total of observed class interactions
.

The MLE of the probability of class interactions is the relative frequency of observed class
interactions among all class interactions.

3.5 Bayesian Approach

It is of interest to find out whether it is possible to employ the PPI data from other organisms,
to improve the prediction of a less studied organism. Such an approach would be helpful when
we explore the PPI of new organisms, especially for those complicated organism where only a
small portion of PPI is available. The Bayesian approach provides a way to incorporate prior
knowledge of PPI in the estimation. The Bayesian estimate is based on both the prior knowl-
edge gathered from the training dataset and the testing dataset. Therefore, it is possible to
predict an organism by using another organism as the prior.

In this project, the DIP H.pylori is employed as the training dataset that gives the prior
information of class interactions. The DIP Yeast dataset is the test dataset. The Bayes theorem
is recalled before the implementation of the Bayesian method is described.

3.5.1 Bayes Theorem

Let B1, B2, · · · , Bk be a set of mutually exclusive and exhaustive events, For any event A with
P (A) > 0,

P (Bi|A) =
P (Bi ∩ A)

P (A)
=

P (A|Bi)P (Bi)
∑k

j=1 P (A|Bj)P (Bj)
.
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Equivalently,
P (Bi|A) ∝ P (A|Bi)P (Bi),

where we use the notations:

• P (Bi) is the prior probability of Bi

• P (A|Bi) is the likelihood of A given Bi

• P (Bi|A) is the posterior probability of Bi

• P (A) is the predictive probability of A implied by the likelihoods and the prior probabil-
ities.

In general, a Bayesian statistical model consists of

1. A parametric statistical model f(t|θ) for the data t, where θ is the parameter.

2. A prior distribution π(θ) on the parameter.

The distribution of θ given t is given by

π(θ|t) =
f(t|θ)π(θ)

∫
f(t|θ)π(θ)dθ

or
f(t|θ)π(θ)

∑

θ f(t|θ)π(θ)
,

the posterior distribution of θ given t. The probability of an event is calculated from the data
and from the prior knowledge of that event.

3.5.2 Bayesian Estimates

All PPI are classified into one of the 28 categories of class-class interactions. We assume again
that the probability model of class interactions follows a multinomial distribution, in which all
28 probabilities of class interactions are parameters in the multinomial distribution and the
sample size is the number of all ”observed” class interactions, n. .

It is common to further assume an informative prior from the training data, H.pylori subset
in this project. The conjugate prior to the multinomial distribution is the Dirichlet distribution,
so that the posterior distribution is also a Dirichlet distribution.

Here is the model in more detail.

1. Parametric model – multinomial
In the model, t is the set of all observed PPI in the data matrix, and nk is the frequency
of PPI falling into a class-class interaction indexed as k (see Table 3.1). Class interactions
are computed from all observed PPI, t. The parametric model is set to a multinomial
model,

f(t|θ) =
n.!

∏28
k=1 nk!

Pn1
1 Pn2

2 · · ·Pn28
28 .

Because every class interaction falls into one and only one of 28 categories, the sum of all
probabilities is 1, i.e.,

∑28
k=1 Pk = 1.
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2. Prior π(θ) ∼ Dirichlet Distribution
The prior distribution is set to be a Dirichlet distribution, that is

π(θ) = P (θ|α) = P (P1, · · · , P28|α1, · · · , α28) =
Γ(

∑28
k=1 αk)

∏28
k=1 Γ(αk)

28∏

k=1

(Pαk−1
k ) ,

where α is the set of hyperparameters in the Dirichlet prior and

αk > 0,
28∑

k=1

Pk = 1 .

3. Choices of hyperparameter, α

In the prior distribution (from the training dataset, DIP H.pylori subset), parameters are
called hyperparameters. In the case of Dirichlet prior, all α are hyperparameters and
can be assigned to different values, informative or non-informative. Here, informative
hyperparameters are chosen, so that α is set to be the number of the corresponding class
interactions,

αk = hk ,

where hk is calculated as the same way we did on nk,

hk =
∑

i

∑

j

tij1(∃ u, v : u ∈ F(i), v ∈ F(j), u, v are in category k) ,

and expressed in the frequency table from the training dataset(s) (see Table 3.3).

Table 3.3: Frequency table of class interaction
for training data

a b c d e f g total
a h1 h2 h3 h4 h5 h6 h7

b h8 h9 h10 h11 h12 h13

c h14 h15 h16 h17 h18

d h19 h20 h21 h22

e h23 h24 h25

f h26 h27

g h28

total h.

4. The joint distribution of θ and t given the prior distribution is now calculated as

P (θ, t|α) = f(t|θ)π(θ)

=
∏

i

Pni

i

Γ(
∑

i αi)
∏

i Γ(αi)

∏

i

(Pαi−1
i )

=
Γ(

∑

i αi)
∏

i Γ(αi)

∏

i

(Pni+αi−1
i ) .
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5. The prior predictive distribution is calculated as

P (t) =

∫

θ
f(t|θ)π(θ)dθ

=
Γ(

∑

i αi)
∏

i Γ(αi)

∫

θ

∏

i

(Pni+αi−1
i )dθ

=
Γ(

∑

i αi)
∏

i Γ(αi)
×

∏

i Γ(ni + αi)

Γ(
∑

i(ni + αi))

=
Γ(

∑

i αi)

Γ(α1) · · ·Γ(α28)
×

Γ(α1 + n1) · · ·Γ(α28 + n28)

Γ(
∑

i ni +
∑

i αi)

=

∏

i α
[ni]
i

(
∑

i αi)[n.]
,

where x[n] = x(x + 1) · · · (x + n − 1), here we used that

Γ(αi + ni)

Γ(αi)
= (αi)(αi + 1) · · · (αi + n1 + 1) = α

[ni]
i

and
Γ(

∑

i αi +
∑

i ni)

Γ(
∑

i αi)
= (

∑

i

αi)
[
P

i ni] = (
∑

i

αi)
[n.] .

6. The posterior π(θ|t) is calculated as follows.
Conditioned on observed interactions, the posterior density of 28 categories of SCOP class
interactions also follows a Dirichlet distribution and is given by

π(θ|t) =
f(t|θ)π(θ)

∫

θ f(t|θ)π(θ)dθ

=

[

Γ(
∑

i αi)
∏

i Γ(αi)

∏

i

(Pni+αi−1
i )

]

×

[∏

i Γ(αi)

Γ(
∑

i αi)

Γ(
∑

i ni + αi)
∏

i Γ(ni + αi)

]

=
Γ(

∑

i ni + αi)
∏

i Γ(ni + αi)

∏

i

(Pni+αi−1
i )

∽ Dirichlet(n1 + α1, n2 + α2, · · · , n28 + α28) .

7. The posterior mean and the posterior variance can be calculated as follows.
The posterior mean E(θ|y) is the unique Bayes estimate of θ under the squared loss func-
tion, L(θ, θ̂) = (θ− θ̂)2 , that minimizes the posterior expected loss, E(L(θ̂|y)) [52]. Here,
the posterior means are calculated from the posterior distribution, the Dirichlet distri-
bution, and are the estimates of probabilities of class interactions.

In general, for variables Θ, Θ = {θj ≥ 0, j = 1, · · · , r} satisfying
∑r

1 θj = 1 and following
a Dirichlet Distribution, Dirichlet(α1, · · · , αr), the means and variances of Θ are

E(θi) =
αi

∑r
j=1 αj

, V ar(θi) =
αi(

∑r
j=1 αj − αi)

(
∑r

j=1 αj)2(αi + 1)
.
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The explicit formulae for the posterior mean and the posterior variance in Dirichlet(n1 +
α1, n2 + α2, · · · , n28 + α28) are given by

E(Pk) =
αk + nk

∑

i(αi + ni)
=

αk + nk

(
∑

i αi) + n.
(3.2)

and

V ar(Pk) =
(αk + nk)(

∑

i(αi + ni) − αk + nk)

(αk + nk)2(αk + nk + 1)
, k = 1, 2, · · · 28. (3.3)

3.5.3 Prediction

Based on the data matrix D and the predictive distribution, we can predict the probabilities of
having a new protein-protein interaction, if the SCOP assignments to both interacting proteins
are available. The prediction of the PPI is the conditional probability of a protein-protein in-
teraction given the SCOP classes of two proteins.

To predict a new interaction between Protein x and Protein y, x ∽ y, for Protein x with
superfamily assignment F(x) and Protein y with superfamily assignment F(y), we proceed as
follows.

Let P (x ∽ y|t, α, u ↔ v) be the probability that two proteins x and y interact, conditioning
on the specific class interaction, u ↔ v. Here, P (u ↔ v|t, α) is the probability that the specific
class interaction, u ↔ v , happened among all potential class interactions between x and y.
The probability of having a new interaction conditioning on the known data is to sum up each
conditional probability that two proteins interact, given the class interaction between them
being observed, and is given by

P (x ∽ y|t, α) =
∑

u∈F(x)

v∈F(y)

[P (x ∽ y|t, α, u ↔ v) · P (u ↔ v|t, α)] .

At present, the parametric model only deals with single-class proteins, so the chance that
two specific SCOP classes being observed from a given protein pair is one, i.e., there exists no
other class-class interaction between them. In this case, the above equation can be simplified as,

P (x ∽ y|t, α) =
∑

u∈F(x)

v∈F(y)

P (x ∽ y|t, α, u ↔ v)] .

Given the class-class interaction, u ↔ v, between two proteins x and y is in the category
k (Table 3.1), the probability that they interact can be estimated by the maximum likelihood
estimate and the Bayesian estimate as follows.

• The prediction can be carried out by using maximum likelihood estimate,

P (x ∽ y|t, α) = P (x ∽ y|t, α, u ↔ v) = P̂k =
nk

n.
.
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• The prediction can be carried out by using Bayesian estimate,

P (x ∽ y|t, α) = P (x ∽ y|t, α, u ↔ v)

=
P (x ∽ y, t, α|u ↔ v)

P (t, α)

=
α

[n1]
1 · · ·α

[nk+1]
k · · ·α

[n28]
28

(
∑

i αi)[n.+1]
·

(
∑

i αi)
[n.]

α
[n1]
1 · · ·α

[n28]
28

=
αk + nk

(
∑

i αi) + n.
,

using that
a[x+1]

a[x]
=

a(a + 1) . . . (a + x − 1)(a + x)

a(a + 1) . . . (a + x − 1)
= a + x .

Before we show the results, we explain a second approach based on odds ratios.
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Chapter 4

Odds Ratio-based Approach

Instead of looking at the occurrences of class interactions, the odds ratio of the class interaction
gives a measure of the relative count of the class interaction which is found between present
links and absent links. The odds ratio of the class interaction calculates the proportion of a
certain type of class interaction in the group of present divided by the proportion of the same
type of interaction in the group of absent links. In the case that some classes are rare, the odds
ratio can reflect the fact that rare observations may still reveal critical information, while they
are easily neglected in frequency-based approach.

To be more specific about the links, the present links are the observed class-class interac-
tions decomposed from PPI. The absent links are the links in the complete network of proteins
except those observed interactions (present links). As the current data show that PIN are quite
sparse, i.e., there are many proteins with relatively small number of links, unknown links are
treated as absent links.

4.1 Frequency Table

The complete PIN is constructed using all proteins with SCOP class assignments. The PPI
are decomposed into 28 categories of class-class interactions. As in the Table 3.1, each type of
class-class interaction is a category with an index k. For each k, three frequencies are calculated
for the present link, the absent link and the full link.

The present links are the observed PPI data. The absent links are the difference between
full links and present links. The frequency of full links can be estimated using the numbers of
proteins in the two SCOP classes. The details are described below.

4.1.1 Inference of full links in the full graph

Consider a PIN with S proteins from 7 SCOP classes,

S = m1 + m2 + · · · + m7

m = {m1,m2, · · · ,m7}

where M1, · · · ,M7 are the numbers of proteins in SCOP class a, · · · , g, respectively.
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The frequency of potential class interactions between class u and class v (full links), which
is the row total fk of category k, is calculated from Mu and Mv as follows,

fk =

{ (Mu

2

)
if u = v proteins from the same class u

Mu · Mv if u 6= v proteins from different classes u and v .
(4.1)

where k ∈ 1, 2, · · · , 28.

4.1.2 Frequency table for odds calculation

The frequency table is designed for the calculation of the odds ratios. It is comprised of the
frequencies of present links, absent links and the complete links.

• The frequency of the complete links, fk, is the frequency of all interactions, including
present links and absent links, from proteins in the category k.

• The frequency of the present links, fk,1, is the frequency of the observed interactions. The
vector of the present links is as fk,1 = (f1,1, f2,1, · · · , f28,1).

• The frequency of the absent links, fk,2, can be calculated from fk,2 = fk − fk,1 .

The frequency table is constructed so that the row represents the category of class-class inter-
actions.

Table 4.1: The frequency table of positive links and false links

class-class interaction k present links fk,1 absent links fk,2 complete links fk

a ↔ a 1 f1,1 f1,2 f1

a ↔ b 2 f2,1 f2,2 f2
...

...
...

...
...

g ↔ g 28 f28,1 f28,2 f28

f.,1 f.,2 f.

4.2 Probability Model

To estimate the odds of class interactions, the parameters of interest are πp and π1|k and
π2|k, where πp is the probability of a randomly picked protein falling into SCOP class p. The
parameters πk,1 and πk,2 are the probabilities of observing present links and absent links in the
class-class interaction indexed k. Then, the conditional probability of the present links and the
absent links are π1|k and π2|k , given the class-class interactions is in the category k. Therefore,
the set of parameters is

Θ = {πp, π1|k, π2|k p = 1, 2, · · · , 7, k = 1, 2, · · · , 28} .

The probability model includes two layers of probability models, binomial and multinomial.

1. Given the frequencies of full links, (f1, f2, · · · , fk), that are derived from the frequencies
of proteins in 7 SCOP classes, (M1,M2, · · · ,M7), each type of class-class interaction, row
k, is binomially distributed with probability π1|k.

fk,1 ∼ Bin(fk, π1|k) .
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2. Given the frequencies of proteins in 7 SCOP classes, (M1,M2, · · · ,M7), the rows are
conditionally independent.

3. The number of proteins in each SCOP class, M, is multinomial with parameters {s, π1, · · · , π7},
where

πp = P (a protein x drawn at random is in class p) = P (p ∈ F(x)) p = 1, 2, · · · , 7

and
7∑

i=1

πi = 1 .

The probability model for the k-th class-class interaction is binomial given M,

P (Fk,1 = fk,1|M = m) =

(
fk

fk,1

)

π
fk,1

1|k (1 − π1|k)
fk−fk,1

The joint probability is therefore

P (Fk,1 = fk,1 ,M = m) = P (M = m)

28∏

i=1

P (Fi,1 = fi,1|M = m)

=

(
s

m1 · · ·m7

)

πm1
1 · · · πm7

7

28∏

i=1

(
fi

fi,1

)

(π1|i)
fi,1(1 − π1|i)

fi−fi,1 .

The probability model for all protein interactions is the product of the binomial and the
multinomial,

P (Fk,1 = fk,1) = P (f1,1, · · · , f28,1)

=
∑

m

P (m1, · · · ,m7)

28∏

i=1

P (fi,1|M = m)

=
∑

m

(
s

m1 · · ·m7

)

πm1
1 · · · πm7

7

28∏

i=1

(
fi

fi,1

)

(π1|i)
fi,1(1 − π1|i)

fi−fi,1

where m = (m1,m2, · · · ,m7)

4.3 Maximum Likelihood Estimator

The likelihood is the sum of the joint probabilities over all possible m.

Likelihood = L(Θ,M)

=
∑

m

(
s

m1 · · ·m7

)

πm1
1 · · · πm7

7

28∏

i=1

(
fi

fi,1

)

(π1|i)
fi,1(1 − π1|i)

fi−fi,1 .

We compute the first partial derivative to obtain maximum likelihood estimates,

θ̂mle = arg max
θ

L(Θ,M)
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under the constraint
π1 + π2 + · · · + π7 = 1 .

MLE of π1|k Differentiating with respect to π1|k (π1|k > 0), k = 1, · · · , 28 and equating the
resulting expressions to zero, we get

∂L

∂π1|k
=

∑

m

A ×






28∏

i=1
i6=k

(
fi

fi,1

)

(π1|i)
fi,1(1 − π1|i)

fi−fi,1






×

(
fk

fk,1

)

(π1|k)
fk,1(1 − π1|k)

fk−fk,1

[
fk,1

π1|k
−

(fk − fk,1)

1 − π1|k

]

= 0

where A =
( s
m1···m7

)
πm1

1 · · · πm7
7 , yielding

fk,1

π1|k
−

(fk − fk,1)

1 − π1|k
= 0

so that

π̂1|k =
fk,1

fk
(4.2)

The second derivative is calculated to identify the estimator is to maximize the likelihood.

∂L2(π̂1|k)

∂π1|k
2 =

∑

m

A ×






28∏

i=1
i6=k

(
fk

fk,1

)

π
fk,1

1|k (1 − π1|k)
fk−fk,1






×

(
fk

fk,1

)

π
fk,1

1|k (1 − π1|k)
fk−fk,1

[

−
fk,1

(π̂1|k)2
−

(fk − fk,1)

(1 − π1|k)2

]

if fk,1 ≥ 0, the we have π̂1|k =
fk,1

fk
∈ [0, 1].

It is straightforward to verify that

∂L2(π̂1|k)

∂π1|k
2 ≤ 0 .

When, the present links exist, the second derivative is negative, so that the estimator,
π̂1|k, is a MLE.

Hence, the MLE of the probability of observing positive links in the class-class interaction
(u ↔ v), row k, is the ratio of observed count of class-class interactions between class u

and class v and the total of all potential interactions between class u and class v.

MLE of πp To find the MLE, the method of Lagrange multiplier is applied [52]. The extreme
values for the likelihood of parameter πp, under the constraint

∑7
i=1 πi − 1 = 0, are to be

found on the surface g = g(π) =
∑7

i=1 πi − 1 = 0 at the points where

△L = λ∇g
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for some scalar λ.

∂L

∂πp
=

∑

m

B ×

(
s

m1 · · ·m7

)

(

7∏

i=1
i6=p

πmi

i )(mp · π
mp−1
p )

=
∑

m

B ×

(
s

m1 · · ·m7

)

(

7∏

i=1

πmi

i )(
mp

πp
)

= λ
∂g

∂πp

where B =
∏28

i=1

(
fi

fi,1

)
π

fi,1

1|i (1 − π1|i)
fi−fi,1 and ∂g

∂πp
= 1.

Because λ is a constant for every equation with respect to different πp, p = {1, 2, · · · , 7},
by equating λ in each equation we get

m1

π1
=

m2

π2
= · · · =

m7

π7
=
let

ρ

⇒ πi =
mi

ρ
.

Under the constraint, we have
∑7

i=1
mi

ρ = 1 implying ρ = s.
Therefore, the MLE for πp is

π̂p =
mp

s
, where p = 1, · · · , 7 . (4.3)

4.4 Bayes Estimator

The Bayesian approach is applied in parallel to estimate the probabilities of class-class inter-
actions in PPI. In addition to the target organism, Yeast in this project, another organism,
H.pylori, is used to provide prior information.

1. Parametric model: Multinomial × Binomial
Following the probability model constructed in the previous section, the parametric model
is as follows.

f(Fk,1 = fk,1,M = m|π) =

(
s

m1 · · ·m7

)

πm1
1 · · · πm7

7

28∏

i=1

(
fi

fi,1

)

(π1|i)
fi,1(1 − π1|i)

fi−fi,1

where π = {π1, π2, · · · , π7;π1|1, · · · , π1|28} .

2. Distribution of prior: Dirichlet × Beta
The informative prior from H.pylori on π are chosen to be the Dirichlet distribution as
the conjugate prior to the multinomial distribution in the parametric model. Another
prior on π1|k is the conjugate prior to the binomial distribution, the Beta distribution,
Beta(α, β). Here, we choose a non-informative prior, the uniform distribution, which is a
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special case of the Beta distribution when α = 1 and β = 1. So, the prior distribution in
our Bayesian approach is a Dirichlet × Beta distribution,

π(π|α) = P (π|α)

= P (π1, · · · , π7|α1, · · · , α7) · P (π1|1, π1|2, · · · , π1|28)

=
Γ(

∑7
i=1 αi)

∏7
i=1 Γ(αi)

7∏

i=1

παi−1
i · 1

where α is the set of hyperparameters in the Dirichlet prior, αp > 0, and
∑7

p=1 πp = 1.

3. Joint distribution
The joint distribution of π and (m, fk,1) is given by

P (m, fk,1, π|α) = f(m, fk,1|π) · π(π|α)

=

(
s

m1 · · ·m7

)

×

7∏

i=1

πmi

i





28∏

j=1

(
fj

fj,1

)

(π1|j)
fj,1(1 − π1|j)

fj−fj,1





×

[

Γ(
∑7

i=1 αi)
∏7

i=1 Γ(αi)

7∏

i=1

παi−1
i

]

× 1

= C × B ×
Γ(

∑7
i=1 αi)

∏7
i=1 Γ(αi)

7∏

i=1

παi+mi−1
i ,

where C =
( s
m1···m7

)
and B =

∏28
j=1

( fj

fj,1

)
(π1|j)

fj,1(1 − π1|j)
fj−fj,1 .

4. Prior predictive distribution
To sum up all π we will have the prior predictive distribution on (m, fk,1).

P (m, fk,1) =

∫

π
f(m, fk,1|π) · π(π|α)dπ

=

∫

π

(
s

m1 · · ·m7

) 7∏

i=1

πmi

i

28∏

j=1

(
fj

fj,1

)

(π1|j)
fj,1(1 − π1|j)

fj−fj,1

×
Γ(

∑7
i=1 αi)

∏7
i=1 Γ(αi)

7∏

i=1

παi−1
i dπ

= C × D ×

∫

π1···π7

7∏

i=1

παi−1
i dπ1 · · · π7

×

28∏

j=1

(
fj

fj,1

)∫ 1

0
(π1|j)

fj,1(1 − π1|j)
fj−fj,1dπ1|j

= C × D ×

∫

π1···π7

7∏

i=1

παi−1
i dπ1 · · · π7

×
28∏

j=1

(
fj

fj,1

)
Γ(fj,1 + 1) × Γ(fj − fj,1 + 1)

Γ(fj + 2)
,
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where C =
( s
m1···m7

)
and D =

Γ(
P7

i=1 αi)Q7
i=1 Γ(αi)

.

Note that the Beta function1 is used in the integration.

5. Posterior Distribution
With the Dirichlet×Beta prior, the posterior distribution is shown to remain a Dirichlet×Beta
distribution,

π(π|m, fk,1) =
f(m, fk,1|π)π(π|α)

∫

π f(m, fk,1|π)π(π|α)dπ

=
C ×

∏28
j=1

( fj

fj,1

)
π

fj,1

1|j (1 − π1|j)
fj−fj,1 × D ×

∏7
i=1 παi+mi−1

i

C × D ×
Q7

i=1 Γ(αi+mi)

Γ(
Pi

i=1 αi+mi)
×

∏28
j=1

( fj

fj,1

)Γ(fj,1+1)Γ(fj−fj,1+1)
Γ(fj+2)

=

[∏7
i=1 Γ(αi + mi)

Γ(
∑7

i=1 αi + mi)

]

·





28∏

j=1

[
Γ(fj + 2)

Γ(fj,1 + 1)Γ(fj − fj,1 + 1)
π

fj,1

1|j
(1 − π1|j)

fj−fj,1 ]





∽ Dirichlet(α1 + M1, α2 + M2, · · · , α7 + M7) ×
∏28

j=1 Beta(fj,1 + 1, fj − fj,1 + 1) .

6. Posterior mean
Since the posterior distribution is a product of a Dirichlet and a Beta distribution, the
estimates the posterior probabilities of πp and π1|k can be calculated through their poste-
rior means as the section 3.5.2.

The posterior mean of πp is the mean in the Dirichlet distribution,

π̂p = E(πp|m) =
αp + mp

∑7
i=1(αi + mi)

p ∈ {1, 2, · · · , 7} . (4.4)

The posterior mean of π1|k is the mean in the Beta distribution. As the mean for a
random variable following a Beta distribution, Beta(α, β), is α

(α+β) , therefore the mean in

Beta(fj,1 + 1, fj − fj,1 + 1) is

π̂1|k = E(π1|k|fk,1) =
fk,1 + 1

(fk,1 + 1) + (fk − fk,1 + 1)
=

fk,1 + 1

fk + 2
k ∈ {1, 2, · · · , 28}. (4.5)

7. Posterior variance
The posterior variance for πp is calculated from Dirichlet(α1 +M1, α2 +M2, · · · , α7 +M7)
and is given by,

V ar(πp|m) =
(αp + mp)[

∑7
i=1(αi + mi) − (αp + mp)]

(
∑7

i=1 αi + mi)2(
∑7

i=1(αi + mi) + 1)
.

The posterior variances for π1|k is calculated from Beta distribution, Beta(α, β). The

variance in Beta distribution is αβ
(α+β)2(α+β+1)

. So the variance of π1|k in Beta(fj,1 +

1, fj − fj,1 + 1) is given by

V ar(π1|k|fk,1) =
(fk,1 + 1)(fk − fk,1 + 1)

(fk + 2)2(fk + 3)
.

1Beta function: β(n, m) =
R 1

0
tn−1(1 − t)m−1dt = Γ(n)Γ(m)

Γ(n+m)
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Chapter 5

Results

The data analysis is performed using both the frequency-based approach and the odds ratio-
based approach. These two approaches view the relationship between the protein classes and
the protein interaction differently. The first one estimates the probability an interaction falls
into a specific class-class interaction while the second one estimates how likely an interaction
is observed given that the protein classes are known. Though they have different properties,
these two approaches should both help us to understand the relationship between the protein
structure and protein interactions.

A Bayesian method and the maximum likelihood method are used for estimation. The
Bayesian method employs a prior derived from H.pylori data. Different priors may affect the
Bayesian method greatly and therefore the choice of prior needs to be considered carefully. In
general, the Bayesian method performs better when few interactions are known and the MLE
when more data is available.

Different subsets of the data are used to explore the possible factors affecting the results.
Considering interacting proteins from a smaller subset of SCOP classes may reduce the noise
from minor classes. Here we select PPI from the first four SCOP classes, a, b, c and d, that
comprised 84% of all PPI.

5.1 Size of DIP Yeast Subsets

There are 49 Yeast datasets of PPI in DIP from the year 2001 to the year 2005. The datasets
are uploaded in a monthly fashion. We downloaded all subsets of Yeast in the DIP database.
The older interactions are included in newer datasets which are presented in the Figure 5.1.
The blue line on the top is the total number of PPI and the two lines below are restricted on
PPI from single class proteins in 7 and 4 SCOP classes. Two major jumps indicate that many
interactions are identified in 2002-02 and in 2003-01. Reduced datasets only include proteins
from the major SCOP classes, a, b, c, and d.

5.2 Results of the Frequency-based Approach

Following the previous chapter, the frequency-based approach is applied to the analysis of PPI
from DIP Yeast. The probabilities of the PPI from a specific class-class interaction are esti-
mated by both the maximum likelihood method and the Bayesian method. Two methods are
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Figure 5.1: Number of PPI in DIP Yeast subsets

compared via their Pearson’s χ2 statistics, as it measures the deviance between observed data
and predicted data. Earlier datasets are used to predict new interactions in the later datasets.

Here, our selection criteria is that we select only the interactions formed by two single class
proteins. In the case when the multiple class protein(s) involved in interactions, it is not clear
which structure class binds which.

1. Maximum likelihood estimates
The maximum likelihood estimates are calculated from the frequency table of class inter-
actions. It is the relative frequency of the class interaction, nkl

n..
(equation 3.1).

Initially, we analysed the Yeast dataset uploaded on 2001-12 (DIP Yeast 2001). In the
DIP Yeast 2001, there are 8087 PPI observed from 4145 proteins. Among those proteins,
1981 (47.8%) are identified to be single-class. We select 887 single class proteins with 1260
PPI among them, in order to meet our selection criteria. Table 5.1 shows the distribution
of these PPI in the 28 class-class categories
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Table 5.1: Frequency table of class-class interactions (DIP Yeast 2001)

SCOP class a b c d e f g total

a 89(0.071) 126(0.100) 127(0.101) 114(0.090)) 15(0.012) 2(0.002) 28(0.022) 501

b 96(0.076) 92(0.073) 82(0.065) 5(0.004) 2(0.002) 22(0.017) 299

c 132(0.105) 100(0.079) 11(0.009) 7(0.006) 26(0.021) 276

d 99(0.079) 12(0.010) 3(0.002) 40(0.032) 154

e 3(0.002) 1(0.001) 3(0.002) 7

f 0(0.000) 0(0.000) 0

g 23(0.018) 23

total 1260(1.0)

The MLE is shown in parenthesis.

2. Bayesian estimates
The prior data are the PPI from DIP H.pylori. It includes 1420 PPI from 710 proteins.
Among them, 434 (61.13%) proteins have the SCOP class assignment. Totally, 185 PPI
formed by single class proteins are selected as in Table 5.2. In our model (section 3.5.2),
the account of each cell hkl is the hyperparameters, αkl in the Bayesian estimator.

Table 5.2: Frequency table of class-class interactions (DIP H.pylori)

SCOP class a b c d e f g total

a 11(0.059) 1(0.005) 26(0.141) 2(0.011) 1(0.005) 4(0.022) 0(0.000) 45

b 3(0.016) 9(0.049) 5(0.027) 0(0.000) 0(0.000) 0(0.000) 17

c 51(0.276) 40(0.216) 2(0.011) 11(0.059) 0(0.000) 104

d 17(0.092) 0(0.000) 1(0.005) 0(0.000) 18

e 0(0.000) 0(0.000) 0(0.000) 0

f 1(0.005) 0(0.000) 1

g 0(0.000) 0

total 185(1.0)

The relative frequencies are shown in parenthesis.

Since an empty cell, i.e, zero count, gives the estimate of the posterior probability zero,
it is risky to give zero probability to any type of class-class interaction, when it could be
due to insufficient observations of PPI rather than biological reality. To counter this, we
add 1 to all cells in the frequency table of H.pylori.

The estimate of the posterior probability is given by the posterior mean. The Dirichlet
posterior mean is αkl+nkl

(
P

ij αij)+n..
with αkl = hkl from the frequency table of H.pylori. (Table

5.2 and 5.3)

Table 5.3: Dirichlet posterior means ± standard deviation

SCOP class a b c d e f g

a 0.068±0.006 0.086±0.007 0.103±0.008 0.079±0.007 0.012±0.003 0.005±0.002 0.020±0.004

b 0.067±0.006 0.069±0.007 0.059±0.006 0.005±0.002 0.003±0.001 0.016±0.003

c 0.123±0.008 0.095±0.008 0.010±0.003 0.013±0.003 0.019±0.003

d 0.079±0.007 0.009±0.002 0.004±0.002 0.028±0.004

e 0.03±0.001 0.002±0.001 0.003±0.002

f 0.002±0.001 0.001±0.001

g 0.017±0.003

total 1.0
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The later dataset uploaded on 2002-12 (DIP Yeast 2002) is predicted. Table 5.4 shows the
observed PPI in DIP Yeast 2002 and their expected frequencies in each of the 28 class-class
categories. The expected frequencies are calculated from the Dirichlet posterior means in
Table 5.3 times 2575, the total number of PPI in DIP Yeast 2002.

Table 5.4: Frequency table of observed data vs. expected data (DIP Yeast 2002)

SCOP class a b c d e f g total

a 167 (175.0) 237 (221.3) 255 (265.9) 247 (202.4) 40 (30.9) 3 (13.7) 46 (51.5)

b 161 (173.3) 179 (176.7) 180 (152.7) 23 (12.0) 3 (6.9) 42 (41.2)

c 218 (317.4) 301 (243.6) 41 (25.7) 11 (34.3) 40 (48.0)

d 226 (202.4) 53 (24.0) 6 (10.3) 52 (72.1)

e 6 (8.6) 1 (5.1) 9 (8.6)

f 0 (5.1) 0 (3.4)

g 28 (42.9)

total 2575 (2575.0)

The expected frequency by the Bayesian method is shown in parenthesis.

3. Evaluation of the performance
Our models are tested using earlier datasets to predict later datasets. The evaluation
of the performance is carried out using the Pearson’s χ2 statistics, where the degree of
freedom is 28−1. A smaller χ2 means a smaller difference between the observed frequency
and the expected frequency, thus a better prediction.

In Figure 5.2, the results show that the Bayesian estimate performs better, which means
smaller Pearson’s χ2 statistics, when the data are not intensively explored (i.e., less PPI
data available in the early stage) so that the prior from H.pylori provides useful infor-
mation in the Bayesian model. Meanwhile, the maximum likelihood method yields good
results after accumulating many known interactions. Hence, the maximum likelihood
method would be more useful in those species where large amounts of PPI data are avail-
able.

In addition, the reduced datasets are analysed because the reduction of the noise from
rarely observed class interactions enlarges the differences between the two methods, and
the χ2 statistic clearly decreases as the analysing domains are cleaner. As 84% of in-
teractions are observed in the first four SCOP classes, the result therefore can still be
considered representative.

In the righthand of Figure 5.2, the Bayesian method has constantly smaller χ2 values than
the maximum likelihood when it is trained with the earlier dataset. Though similar trends
are found in the two figures in Figures 5.2, the reduced dataset shows a clearer difference
between the MLE and the Bayesian method.
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Figure 5.2: χ2 statistics from Bayesian estimates and MLE
The χ2 statistics from the two methods are showed in Figures 5.2. In the lefthand of Figure
5.2 is the analysis using proteins from all 7 SCOP classes (i.e., Class a to Class g) and the
righthand figure uses proteins from the 4 major SCOP classes, a, b, c and d. In each figure,
four test datasets are selected to establish the probability model.
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5.3 Results of the Odds Ratio-based Approach

The odds ratio-based approach is also applied to the analysis of the DIP Yeast datasets. Similar
to the previous analysis (section 5.2), in order to demonstrate the computation of the Bayesian
estimates and the maximum likelihood estimates, the subset of PPI in Yeast dated 2002-01 is
used to as the training dataset and a later subset dated 2002-02 is set as the target dataset
to be predicted. The prior in the Bayesian method is still counted using the PPI in H.Pylori.
Again, only single-class proteins are considered here.

Aim The aim of the odds ratio-based approach is

1. To estimate π̂p, the probabilities of proteins in the SCOP class, where p = 1, · · · , 7,
(see equations 4.3 & 4.4).

2. To estimate π̂1|k, the probability of the odds of two proteins interacting given their
SCOP classes, where k = 1, · · · , 28, (see equations 4.2 & 4.5).

First, the distribution of the number of proteins in every SCOP class is summarized in
Table 5.5.

Table 5.5: Number of protein in the
SCOP classes

SCOP class a b c d e f g total
H.pylori 19 12 90 39 3 8 0 171

Yeast 2002-01 194 138 282 221 25 6 53 919
Yeast 2002-02 245 189 367 287 37 9 62 1196

Secondly, from the observed frequencies of class distribution, the numbers of all interac-
tions (links in the full graph) are calculated according to the formula (equation 4.1).

Table 5.6: Frequency table of the observed interactions and the full links (in parentheses)
from DIP Yeast 2002-01

SCOP class a b c d e f g total

a 90 (18721) 134 (26772) 129 (54708) 116 (42874) 15 (4850) 2 (1164) 28 (10282)

b 109 (9453) 97 (38916) 88 (30498) 5 (3450) 2 (828) 25 (7314)

c 133 (39621) 100 (62322) 11 (7050) 7 (1692) 26 (14946)

d 100 (24310) 12 (5525) 3 (1326) 40 (11713)

e 3 (300) 1 (150) 3 (1325)

f 0 (15) 0 (318)

g 23 (1378)

total 1302 (421821)

The number of full links is shown in parenthesis.

Estimators Both the MLE and Bayesian estimator are employed.
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The estimators for πp are given in (4.3) and (4.4), namely

π̂p [mle] =
mp

s
p = 1, · · · , 7

and

π̂p [bayes] =
αp + mp

∑7
p=1(αp + mp)

p = 1, 2, · · · , 7 .

The estimators for π1|k are given in (4.2) and (4.5), namely

π̂1|k [mle] =
fk,1

fk
k = 1, · · · , 28

and

π̂1|k [bayes] =
fk,1 + 1

fk + 2
k = 1, 2, · · · , 28 .

Data analysis The subset of DIP Yeast in 2002-01 are selected as the test data to predict
another subset of DIP Yeast in 2002-2. The estimates are computed by both methods
and compared against the real data. In addition, the 95% credible intervals are provided
for the Bayesian estimates of probabilities.
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Figure 5.3: Comparison among Bayesian estimate, MLE, and real data with proteins from 7
SCOP classes

Figures 5.3 and 5.4 show the comparison of the two estimates against the relative fre-
quency of the target dataset. The left figure is the estimate for π̂p and the right figure is
for π̂1|k. It is not surprising that both methods perform well in catching the pattern of
the real distribution. It does not seem that one method is better than another from the
histogram. The two methods obtain close estimates in most predictions.
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Figure 5.4: Comparison between Bayesian estimate, MLE and real data with proteins from 4
SCOP classes (a,b,c,d)

In Figure 5.3, the Bayesian method has several bad estimates on π̂1|k due to several
zero/small frequencies from the prior. This disadvantage could be avoid by the removal
of these counts. Consequently, the analysis carried out with proteins from only the first 4
SCOP classes is presented in Figure 5.4.

Comparison of the methods We evaluate the two methods by comparing their Pearson’s
χ2 statistics. Exactly as when evaluating the frequency-based approach, four subsets of
DIP Yeast dated from 2001-09 to 2004 -02 are picked as the test datasets to predict later
identified PPI.

In Figure 5.5, the figure on the righthand is the analysis χ2 statistics using proteins from
7 SCOP classes whereas the left one uses only major SCOP classes. In general, the χ2

statistics in the estimation of π̂p shows that the maximum likelihood method performs
better (smaller χ2 statistics).

In Figure 5.6, the Bayesian method has better performance in the estimation of π̂1|k

(smaller χ2 statistics), when only a few PPI data are available for the target organism.
The prior helps in gaining information from another organism. On the righthand figure,
the analysis using proteins from only major SCOP classes reduces the χ2 statistic. Both
methods have similar performance. Thus, the use of prior is not much helpful here. It
might suggest that better models and more analyses are needed.
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Figure 5.5: Comparison of the two methods via χ2 statistics (π̂p)
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5.4 Structure Prediction

An important step in understanding the complicated biological processes within a cell is the
structural description of the protein interaction. The prediction of protein structure can also
be approached using our models. Both the frequency-based approach and the odds ratio-based
approach are able to provide an estimate of the probability of the class-class interaction.

Here we describe step by step the implementation of the prediction and present our predic-
tion results.

Target proteins Given a newly identified interaction constructed by an annotated protein
(existing protein) and an unannotated protein (new protein), we want to predict the
structure of this unannotated protein. (see Figure 5.7)

Figure 5.7: New interactions from an existing network

Within the protein networks, newly identified interactions (new interactions) from one
existing protein and one new protein are selected for analysis. For those existing proteins
we know their structures, while for those new ones we do not. Here, we choose proteins
where the 3D structure of two interacting proteins are both known in order to evaluate
the goodness of the prediction (see Figure 5.8).

Figure 5.8: Three types of new interaction

Assigning probabilities from 1-step interacting partners Initially, proteins from any of
the 7 SCOP classes are included. The probability, that a new protein is in each structural
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class, is calculated based on the classes of its interacting partner(s), for which structures
are already known.

In our prediction, two types of proteins are ignored.

1. Proteins isolated from the major PIN are ignored, because there are not enough
proteins in the neighborhood to infer its structure.

2. The interacting proteins from unknown structure classes are excluded, because for
these proteins we can not validate our prediction.

Assume that a new protein x has observed interactions with m existing proteins, I1, · · · , Im,
with structure classes, F(I1), · · · , F(Im), where the function F(·) returns the structure class
of a protein. Let W be the set of 7 SCOP classes. The probability that the new protein
x is in class k can be estimated by

P̂ (F(x) = k| 1-step interaction) =

∏m
i=1 P (k ↔ F(Ii))

∑

c∈W

∏m
i=1 P (c ↔ F(Ii))

.

The estimate of P (F(Ii) ↔ k) can be obtained from the P̂k in the frequency-based approach
or the π̂1|k in the odds ratio-based approach.

Prediction of structures The prediction of protein structure is carried out by the frequency-
based approach and the odds ratio-based approach. In each approach, the maximum
likelihood method and the Bayesian method are implemented. The subset of DIP Yeast
in 2002-01 is used to predict later datasets of yeast PPI. The DIP H.pylori is used as the
prior in the Bayesian method. The aim is to predict the structure of new proteins in Yeast
subsets.

Among all new interactions between existing proteins and new proteins, we select only
those interactions for which we know the structure classes in both interacting proteins, so
that the verification of the prediction is possible (see Figure 5.9). Finally, according to the
datasets, there are 116 to 300 proteins selected for the prediction. The prediction is based
on its 1-step interacting partner as described above. In both approaches, the accuracies
(i.e.,the numbers of correctly predicted proteins over all proteins) are calculated.

Figure 5.9: A new protein with two annotated interacting proteins

In the odds ratio-based approach, in addition to π̂1|k, the probability of protein from
a SCOP class, π̂p, is also used to predict protein structures. A protein is randomly
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assigned its SCOP class according to π̂p estimated by two methods. After all proteins
are predicted their classes, the number of correct predictions is recorded. The procedure
is then replicated for 100 time for each dataset to obtain an averaged number of correct
predictions.
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Figure 5.10: Accuracies of the structure prediction (7 SCOP classes)
The figures show the accuracies (numbers of correctly predicted proteins over all predicted
proteins) given by the frequency-based approach (lefthand figure) and the odds ratio-based
approach (righthand figure).

The total number of proteins to be predicted increases with time. Among two estimates
used in two approaches as in Figure 5.10, the Bayesian estimate P̂k in the frequency-based
approach correctly predicted ∼ 30% of proteins, which are about 84 correct predictions.
If second chances are given, that is the wrongly predicted proteins are re-assigned their
structures with the second high probabilities, it can reach 133 (44%) correctly predicted
proteins totally. The Bayesian estimates π̂1|k in the odds-ratio based approach does not
predict well. The reason could be the use of the non-informative prior. It might indicate
that the selection of prior affects the performance.

In the odds ratio-based approach, the predictions from the Bayesian estimates π̂p and the
MLE π̂p shows, however, more correctly predicted proteins than those predicted by π̂1|k.
The reason could be that the number of available PPI is not sufficient to provide good
estimation when they are split into 28 categories, though their structure classes do help
in understanding the protein interaction.

In Figure 5.11, the predictions are based on the reduced datasets that proteins from four
major classes are selected. Though the total number of proteins are reduced, the accura-
cies are slightly increased. A reason might be that more proteins are from major classes,
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Figure 5.11: Accuracies of the structure prediction (4 SCOP classes)
The figures are from the reduced datasets with only 4 major classes, (a, b, c, d), proteins.

so that more information are provided. Whereas proteins from other classes (e, f, g) are
less available, that make the prediction less accurate. Again, the Bayesian estimate P̂k

has better performance that its accuracy stays at 30% to 35% throughout the predictions.

In particular, as in the righthand figures the accuracy of Bayesian estimate π̂1|k has been
increased gradually and is slightly higher than the MLE π̂1|k, when the datasets are re-
duced (Figure 5.10 right and Figure 5.11 right). The reasons might be that the proteins in
classes e, f, g in H.pylori do not help in the prediction of the Yeast PPI and are removed
in the reduced datasets, and the major classes dominate most PPI. Nevertheless, the low
accuracy suggests that a better model is needed.

Evaluation of the performance We can evaluate the performance using the ROC curve,
which is based on the Specificity (SP) and the Sensitivity (SN).

Table 5.8: Evaluation of the perfor-
mance

Prediction
Annotation positive negative

positive TP FN
negative FP TN

Specificity is the ability to reject ”false positive” matches. The most specific search will
return only true matches, but might have lots of false negatives. Sensitivity is the ability
to detect ”true positive” matches. The most sensitive search finds all true matches, but
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might have lots of false positives. Therefore, the ideal ROC curve shall close to the top
left corner.

The specificity and the sensitivity are calculated using the following formulas,

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN
.
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Figure 5.13: ROC curves - odds ratio-based

Unfortunately, the ROC curves from both approaches are prone to the right indicting
the bad performance in the structure prediction (see Figures 5.12 and 5.13). There are
several possible factors which could affect the result. Firstly, the relationship between PPI
and protein structure are not yet clearly understood. Protein structures are not the only
factor affects PPI. It is difficult to address their relationship well when other potential
factors are not considered. Secondly, the incompleteness of PPI data might give biased
predictions. The earlier PPI data will not necessarily provide useful information for the
understanding of later PPI data. Insufficient of PPI data that makes the statistical anal-
yses more difficult. Several parameters in our models are estimated only from very few
observations. Lastly, multiple domain proteins are excluded from our analyses.

Then we move to the individual approach, with the frequency-based approach (Figure
5.12), the Bayesian method has a higher specificity than MLE in most of the time. The
use of prior improves the prediction of the protein structures. However, different priors
have to be tested.
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With the odds ratio-based approach (Figure 5.13), both the Bayesian method and the
maximum likelihood method perform similarly when π1|k are used for the prediction.
This may be explained by the fact that a non-formative prior is used in the Bayesian
model so that two estimates have similar forms (equations 4.2 & 4.5). Hence, the use
of informative prior may needed to improve our model. Besides, the π̂p seems to reach
higher specificities then π1|k suggesting our models are needed to be improved.

Figures 5.14 and 5.15 show the ROC curves from the reduced datasets. In general, it is
similar to the analysis using all proteins, except the specificities are improved slightly.
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Chapter 6

Network Statistics

Various biological networks such as metabolic networks, gene transcriptional regulatory net-
works, protein folding networks, and PIN provide plenty of data for analysis. The availability of
these genome-scale biological networks has enabled the analysis of their topological structures,
which may allow us to answer biological questions by taking the whole picture into account
[31, 41, 69].

If the proteins are nodes and the interactions are edges, PPI can be viewed as networks.
Some topological properties in PIN have been observed and biological explanations have been
given [27]. The modularity of the networks indicates proteins form clusters to achieve biolog-
ical functions [21, 61]. The protein clusters appear in frequently observed patterns, network

motifs, that work as function modules and are conserved in different organisms [56]. On the
other hand, the highly connected nodes, called hub proteins, are found to show evolutionary
conservation [20]. They are thought to play critical roles in communicating among clusters in
networks [74].

From the macroscopic point of view, knowledge about the network will be helpful in un-
derstanding the mechanism of protein interactions. A concrete description of a network model
would provide a clearer picture for protein networks. Several network models, such as the small
world model and a random geometric model, have been proposed [51, 59, 72]. However, neither
statistical model has been well studied for the PIN, nor does any of them explain the data
properly. The difficulty comes from (1) The fact that the experimental data suffer from high
experimental error [40]. (2) Different reliabilities of data make it complicated to integrate
multiple data sources [11]. (3) Whether subnets of the networks maintain the same properties
as the whole networks is not clear [60, 64]. The sampling bias from different sampling schemes
also need to be studied.

Statistical models for networks are an important area to be studied and the application on
PIN is one of the most interesting areas to be explored. At present, the following network statis-
tics are calculated to describe the behavior of PIN [79]. The vertex degree, a measure of the
connectivity of one node. The clustering coefficient of a node which characterizes the connec-
tivity of any two interaction partners in its neighborhood. These both describe the clustering
in the networks. In addition, the shortest path length is the smallest number of links between
two selected nodes. In this report, the probabilistic models of the distribution based on the
network statistics are studied as the beginning for network modelling [6]. The results provide
an insight of the structure of PIN and show the potential of network structure in improving the
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prediction of PPI, as described in Chapter 7.

6.1 Network Models

The topology of networks is an interesting area of mathematics. It was first developed by
Leonard Euler in 1735 in the problem of ”The Seven Bridges of Königsberg”. In 1960, Erdös
and Rényi [19] proposed a probabilistic model for random graphs, in which each of the possible
edges in the network exists with a probability p. Hence, the degree distribution is a binomial
distribution.

However, the random model does not appear to fit social networks and biological networks
well. In the case of social networks, the common situation is that two friends of one individual
tend to know each other as well, which makes the social interaction less random. An experiment
on social networks claims to exhibit the famous six-degrees of separation phenomenon [42]. It
says the average number of social links needed to connect two people in the United States was
less than six. This special characteristic, short path links, has been observed in other networks
including biological networks.

The small-world phenomenon includes two conditions [3]:

1. A small number of links between any two nodes

2. The existence of clustering

These two conditions seem contradictory in that the first one is based on the concepts from the
random graph while the second one is from the ordered lattice. A small world graph is like a
graph somewhere between a random graph and a fixed lattice.

In 1998, Watts and Strogatz [72] applied a random rewiring scheme to introduce random-
ness into a fixed lattice, called the Watts-Strogatz model. In this model, small-world networks
emerge as the result of randomly rewiring a probability p of the links, i.e., the shortcuts, in the
ordered lattice. The Watts-Strogatz small world model was later modified that the shortcuts
are added with a probability p rather than are rewired from the fixed edges. The characteristics
of the Watts-Strogatz model might explain the modularity found in the PIN and the nature
of biological communication. A rigorous mathematical proof of the distribution of the shortest
path lengths in the Watts-Strogatz model is given by Barbour and Reinert [6, 7]. Recently,
Lin [35] provided a proof for the compound Poisson distribution of clustering coefficients 1 in
the Watts-Strogatz model . Both results enable the verification of the model on real networks
and statistical testing.

In some real networks such as the biological networks, there exist some highly connected
nodes. The degree distribution of the nodes show a heavy tail toward the right end, resembling
a power law on the log-log plot. The heavy-tailed distribution would imply an infinite variance
and is named ”scale-free” [63]. Scale-free networks are commonly claimed to be observed on
biological interaction data including PIN [78]. However, it should be noted that the observed
power law of degree distribution is based on an approximate result, rather a mathematical

1A different but similar definition is used in his work. Instead of the total number of edges among the
neighbours, the expected number is used in the calculation of the clustering coefficient.
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proof. The low coverage of experimental data implies the possibility of bias inference. Without
statistical testing, we can not conclude that the observed distribution follows a power law.

6.2 Connectivity

The connectivity of a protein, its degree, is the total number of its interacting partners. The
relative frequency versus degree, the degree distribution, are shown in Figure 6.1.
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Figure 6.1: Degree Distribution in the H.pylori (left) and in the Yeast (right)
The horizontal axis is the degree (k) and the vertical axis is the relative frequency P (k) on a
log-log scale.

In Figure 6.1, there exist many proteins with low connectivity and also a few highly con-
nected proteins. The existence of the proteins with many interacting partners, hub proteins, is
thought to be related to the evolution of proteins, that many hub proteins are found to be old
proteins [74]. They are more conserved and play important roles in biological processes.

The log-log plots of degree distributions from Yeast PIN and the H.pylori PIN fit linear
regression reasonably well (R2 = 0.88, 0.96, respectively). They seems to follow power-law dis-
tributions, which are characteristic for a scale-free model. However, it is not clear whether the
PIN are really scale-free. The sampling bias and the fitness of power-law might mislead the
statistical inference.

6.3 Clustering

Clustering is an important characteristic in the PIN in that it demonstrates the density of
connection. It can be measured through the calculation of the clustering coefficient. The
clustering coefficient of a vertex i, Ci is defined as the ratio between y, the number of the edges
connecting all 1-step neighbours, z, and all possible edges connecting 1-step neighbours

(z
2

)
[6].

Ci =
y

(
z
2

) =
2y

z(z − 1)
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The statistics C(k) is defined as the average of clustering coefficient for all vertices with
degree k. The high average clustering coefficient C indicates the existence of loops in the net-
works, whereas the random graph only has a few loops.

The protein interaction network is composed by many protein complexes or functional mod-
ules. These complexes and modules are based on certain PPI to achieve particular functions,
that proteins work as a team during the biological process [21, 74]. Even the size and the
pattern of the module, often called motif, will affect its role in the process. It is expected that
the probability of having a within-module interaction will be higher than that of a random
pair [80]. In order to further understanding the networks, the distribution of the clustering
coefficient against the degrees shall be helpful in describing the structure of the networks. In
Figure 6.2, the low-degree proteins with high clustering coefficients suggest the local clustering
in the protein interaction network.

Regarding the average clustering coefficient C of the network, we performed 100 simulations
of random networks with similar sizes, i.e, same number of vertices and same number of edges,
of Yeast PIN (4655 nodes and 15382 edges) and H.pylori PIN (686 nodes and 1404 edges). The
average values of all average clustering coefficients from simulated random networks are 0.0014
and 0.0056, respectively, while they are 0.093 and 0.016 in Yeast PIN and H.pylori PIN. These
two average clustering coefficients from PIN are also the highest comparing with those simu-
lated random networks. This may suggests the existence of clustering in PIN, as one condition
required for the Watts-Strogatz small world model.

6.4 The Shortest Path Length

For a pair of nodes in a network, there might be many paths from one to another. The shortest
path length is the smallest number of links between two selected nodes. Therefore, each pair
of nodes in a network has a shortest path length. The distribution of the shortest path length
reflects the reaction time it requires for passing the message between two nodes. In biologi-
cal networks, it is important to maintain a rapid response so that the efficient communication
and the fast reaction against danger are possible. Therefore, we would expect short path lengths.

In this project, the shortest path lengths between each pair of proteins in Yeast and in
H.pylori are calculated and stored. The network diameter, the longest shortest path length, is
12 in Yeast and 9 in H.Pylori.

PIN have quite small average shortest path lengths, only 4.17 in Yeast PIN (4655 proteins)
and 4.13 in H.pylori PIN (686 proteins), the small average shortest path lengths in PIN meet
the condition required for Watts-Strogatz small world model, too.

Hence, we are interested in comparing the PIN with the Watts-Strogatz model. The theo-
retical model of the approximate shortest path length distribution in the small-world network
is provided by Barbour and Reinert [7] with a rigorous proof . This model is compared with
the empirical distribution in PIN and the results are presented in the following graphs with
statistical tests for goodness of fit.
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Figure 6.2: Clustering distribution of Yeast and H.pylori (top) and the log-log plot for H.pylori
(bottom-left) and for Yeast (bottom-right)
The clustering distribution is presented by the degree versus the clustering coefficient. The
trends on log-log plots imply the possibility of having a hierarchical structure in PIN.
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6.4.1 Comparison between real data and the Watts-Strogatz small world

model

Theoretical Distribution of the shortest path length Watts-Strogatz small world model :
A circle of circumference L, vertices, includes

(L
2

)
directly or indirectly links. Pick any pair

at random, uniformly calculate the shortest path length, D, between these two vertices.
The expected number of the shortcuts is (Lρ

2 ).

Barbour and Reinert [7] provided a mathematical proof, which is a continuous approxi-
mation for the distribution of the shortest path length in the Watts-Strogatz small world
model. Moreover, the bound on the approximation is given in the proof.

ˆE(D) ≈
1

ρ
(
1

2
log(Lρ) + 0.2886) (6.1)

P(D >
1

ρ
(
1

2
log(Lρ) + x)) ≈

∫ ∞

0

e−y

1 + e2xy
dy (6.2)

Parameter Estimates Before fitting the model, the parameters are needed from both the
Yeast (DIP Yeast)and the H.pylori (DIP H.pylori).

1. Two datasets of H.pylori and Yeast provide their L, number of proteins, in the major
interaction networks.

2. The computation on the adjacency matrices of PIN gives the shortest path length,
D.

3. The parameter ρ is approximated from the equation (6.1) above.

4. Finally, the parameters in the Watts-Strogatz small world model are estimated as in
Table 6.1. With these parameters, the theoretical distribution can then be obtained
from the equation (6.2).

Table 6.1: Estimates of the parameters

number of proteins average shortest path length
L D ρ

H.pylori 686 4.137637 0.8375
Yeast 4655 4.176134 1.0907

Figures 6.3 and 6.4 show the distribution of the shortest path length from PIN in red
bars and the distribution from the Watts-Strogatz small world model in the green
line. In both the Yeast figure in the left and the H.pylori figure on the right, they
look to fit well. Statistical tests are carried out as follows.

Tests for goodness-of-fit Statistical tests are carried out to test between the empirical and
the approximate theoretical distributions in Yeast and H.pylori. The shortest path lengths
between any pair of proteins in the PIN are calculated. They are summarized as 9 cat-
egories by their distances. The relative frequency in each category is then the observed
frequency (Oi). In parallel, the Watts-Strogatz model in continuous distribution is also
grouped into 9 categories. The relative frequency in each category is the expected fre-
quency (Ei) under the model.
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Pearson’s χ2 test is performed to compare between Oi and Ei. There are 9 categories
which give the degree of freedom 9 − 1. In the test for Yeast PIN, the χ2 value is calcu-

lated as
∑9

i=1
(Oi−Ei)2

Ei
= 125505, which is significant (χ2

8,0.05 = 15.5). In another test for

H.pylori PIN, its χ2 value is 10257, which is also larger than the 95% significance level.
On the other hand, the Kolmogorov-Smirnov tests are also carried out. The results fail
to conclude that either the Yeast PIN or the H.pylori PIN has the same distribution as
the Watt-Strogatz model.
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Figure 6.5: Comparison of the theoretical distribution and the empirical distribution
The theoretical distributions (green bar) and the empirical distributions (red bar) are compared
for Yeast (lefthand figure) and for H.pylori separately.

It appears that the results of both the χ2 test and the Kolmogorov-Smirnov test do not
support that the Watts-Strogatz small world model fits the PIN well. This might due to
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the fact that the theoretical model we used is for continuous approximating distribution
while the observed distribution is actually discrete. In Figure 6.5 the maximal absolute
difference does not seem to be large at all and the graphs seem to indicate that the model
fits quite well. It is worth further exploring the discrete model using the PIN.

In addition to the test of the shortest path length distribution, the distribution of the
clustering coefficient can be used to explore the Watts-Strogatz small world model. Re-
cently, Lin [35] has proposed a compound Poisson distribution as a theoretical model for
the clustering coefficients in small world networks. It is of interest to see the goodness of
fit on PIN in future work.
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Chapter 7

Future Work

Based on my first-year work, there is much to be improved and even more to be explored. I
believe the keys to success in prediction of protein-protein interactions are, firstly, consider the
experimental error in the prediction. Secondly, multiple sources of information shall be inte-
grated into the analysis. Lastly, a biologically realistic model shall be used as the aim is to
improve our understanding in a biological issue. However, neither the proposed approaches nor
other currently available methods are able to satisfy these conditions.

In order to construct a statistical model that fits the characteristics of PPI, it is apparently
important that the network structure should be incorporated in the model. Meanwhile, the
small-worlds properties shall be further studied to see the goodness of fits with the PIN.

From a biological aspect, it is of interest to identify the factors that influences PIN, we need
to understand, more specifically, to what extent they affect PIN and how these factors interact
with each other. In our approaches, through the SCOP classification applied in the model it is
possible to see, roughly, the connection between the protein structure and the PPI. However,
with current methods it is not easy to clarify the relationships among these factors. Enhanced
statistical models should be studied and developed.

Finally, as our method has already provided a way to make use of prior knowledge for the
prediction of PIN and protein structure prediction, we will try more cross-species predictions
to test the method and to apply other classifications in the model.

7.1 Improvement of the model

Here I describe several aspects that shall be considered to improve our models.

Inclusion of explicit network structure The basic concept of the clustering effect is that
the interacting partners of a protein are more likely to interact. The local clustering in
biological networks has been identified in this report and also in many other studies. The
network statistics of PPI point towards the existence of clustering, the degree distribution
indicates there are a few highly connected proteins. These hub proteins form local clus-
ters in networks and are related to the evolution. It is of interest to study the interacting
pattern within a cluster as well as the inter-connection between clusters.
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To date, only a few studies include the clustering effect in the statistical model for the pre-
diction of PPI. The nature of clustering may increase the complexity in modelling. Deng
et al. [17] applied the concept that proteins in the same complex have similar functions in
their Markov random field model, not mentioning the explicit relationship among physical
interactions within the complex. Yu et al. [79] provide a tool for investigating network
statistics in the networks without further discussion of the prediction. However, to date
no clustering coefficient has been included. We propose to study this in my future work.

Considering the experimental error As discussed in Chapter 2, the experimentally ob-
tained data are reported to be seriously affected by experimental error [15, 16, 40, 43].
It is important to know how much the errors affect the model. Essentially, the false pos-
itives and the false negatives have to be estimated, which has been carried out by either
empirical estimation, that is an inference from the estimate that one protein is likely to
interact with 5 to 50 proteins [16], or by comparing with a positive reference dataset and
a negative reference dataset [32].

The positive reference dataset can be obtained from the datasets built by highly confident
methods or from the validation with multiple datasets. The subset in DIP CORE and
the MIPS datasets1 have been used as the gold standards in some reports [15, 41]. The
construction of a negative reference dataset is more difficult. One possibility is to assume
that proteins from different cellular locations will not interact. Other approaches include
identifying the directed interactions in gene regulatory networks which identify specific
protein pairs that do not interact [45].

Increasing amount of data Firstly, as more experimental PPI, such as the C. elegans, D.
melanogaster, H. sapiens, become publicly available, we shall apply our method on more
PPI data. These sets can be used as the prior, training data or the target data. The large
amount of PPI will allow us to evaluate our method correctly and provide a direction for
model improvement.

Secondly, to construct a whole picture of the PIN, it is essential to integrate more of the
potentially related sources of data. The information that could help in deciphering the
PPI includes the various sources of experimentally observed PPI data (with different relia-
bilities), correlated mRNA expression data that helps to infer PPI, the synthetic lethality
of gene mutations, information about the constituent protein domains, subcellular loca-
tions, protein functions, domain structures and more. It has been shown that integrated
data can improve prediction [17, 33, 56]. In previous studies, a Markov random field
method and the kernel method are used to handle multiple datasets. In modelling, more
efforts have to be made for considering different types of data and their reliabilities in
one model. Our Bayesian approach has the advantage that it includes prior information
from other sources of data in a straightforward manner, which might also allow for data
integration.

Network modelling The study of network models is just in a preliminary stage. The ex-
planation of networks statistics, the study of network motifs, the inference of unknown

1Munich Information Center for Protein Sequence, http://mips.gsf.de
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links and the design of network models are all very exciting topics [4, 6, 77]. The study
of network models may not only stimulate the new ideas for biological networks but also
improve the statistical modelling from pairwise interactions to a whole network.

Network modelling may help not only in untangling the PIN, but also in analysing many
other networks. It involves knowledge from probability, graph theory, statistics and also
background knowledge about the domain being studied. This relatively new subfield has
great potential for better understanding complicated networks in the modern world.

Application For future applications, our Bayesian model shall be improved to predict PPI;
improvements include the following aspects,

1. To investigate potential factors which have effects on the physical interactions; in
addition to the SCOP classification, other classifications such as the functional cat-
egory can be applied in the model to see if they improve the prediction. It is also
possible to combine other factors in the model.

2. To handle multi-class proteins; the current method is limited to analysing single-
class proteins. Multi-domain proteins have been shown to play an important role
in PPI, the Bayesian model shall be modified to analyse multi-domain proteins and
to deal with proteins from multiple categories. On the other hand, it may also be
possible to apply the method in detecting the docking domain pair within the protein
interaction [46]. Then the multiple domain proteins can be handled as the single
domain proteins.

3. To carry out cross-species prediction; the current model uses H.pylori as prior along
with the Yeast data to predict the new interactions in Yeast. The Bayesian method
performs well when the organism has not yet been intensively studied as it takes
advantages of using the prior information from other species. Therefore, it is of
interest to carry out more prediction on other species, especially on those lacking
experimental data. It would also be interesting to apply different priors for prediction
and to study the phylogenetic connection between the training species and the test
species.
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