Antibodies are an essential part of the immune system, being able to attain high specificity and affinity to a large variety of antigens, keeping us safe from most of our molecular invaders. What is exciting is that their binding specificity is controlled through the residues of only six loops, called the Complementarity Determining Region (CDR). Naturally, diversity in the CDR is created through V(D)J recombination and somatic hyper-mutation which “program” the antibody to bind to millions of antigens. Synthetically, it has been shown that grafting different loops or motifs to the CDR can transfer binding properties from other antibodies or proteins, making them a key target for protein design and bio-therapeutic use.
My work is based on the hypothesis that antibody loops are different from the loops in the rest of the protein world, and part of my work is to quantify this difference. The other part of my work is to capitalize on this difference by identifying what we can transplant from non-antibody proteins to antibodies to increase their binding repertoire.