The structures and folding pathways of proteins are of vital importance but are experimentally challenging to study. Although a subset of soluble proteins are known to be capable of correct refolding from a denatured state in vitro, for many this is extremely difficult, inefficient or impossible. In cells, the folding process begins during synthesis, which contributes to the high efficiency of protein folding in vivo. Directional elongation, non-uniform translation speeds, and spatial restrictions due to the ribosome and cellular crowding are features of cotranslational folding that restrict the conformational search space and may promote energetically favourable folding intermediates. My research aims to use computational methods to reveal interesting folding mechanisms and inform our understanding of biology, which may in turn improve computational protein structure prediction.