2.
Vost, L., Ziv, Y. & Deane, C. M. Incorporating targeted protein structure in deep learning methods for molecule generation in computational drug design.
Chemical Science D5SC05748E (2025) doi:
10.1039/D5SC05748E.
3.
Vost, L., Chenthamarakshan, V., Das, P. & Deane, C. M. Improving Structural Plausibility in 3D Molecule Generation via Property-Conditioned Training with Distorted Molecules.
Digital Discovery 10.1039/D4DD00331D (2025) doi:
10.1039/D4DD00331D.
4.
Valsson, I. et al. Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data. Communications Chemistry 8, 41 (2025).
5.
Quast, N. P., Deane, C. M. & Raybould, M. I. J. STCRpy: a software suite for T cell receptor structure parsing, interaction profiling and machine learning dataset preparation.
Bioinformatics btaf566 (2025) doi:
10.1093/bioinformatics/btaf566.
6.
Quast, N. P. et al. T-cell receptor structures and predictive models reveal comparable alpha and beta chain structural diversity despite differing genetic complexity. Communications Biology 8, 362 (2025).
8.
Huhn, A. et al. The molecular reach of antibodies determines their SARS-CoV-2 neutralisation potency. Nature Communications 16, 338 (2025).
9.
Høie, M. H.
et al. AntiFold: Improved antibody structure-based design using inverse folding.
Bioinformatics Advances vbae202 (2025) doi:
10.1093/bioadv/vbae202.
10.
Greenshields-Watson, A., Vavourakis, O., Spoendlin, F. C., Cagiada, M. & Deane, C. M. Challenges and compromises: Predicting unbound antibody structures with deep learning. Current Opinion in Structural Biology 90, 102983 (2025).
11.
Gervasio, J. D.
et al. HeavyBuilder: Analysis of High-Throughput of Antibody Heavy Chain Repertoires in the Structural Space.
Journal of Molecular Biology 169509 (2025) doi:
10.1016/j.jmb.2025.169509.
12.
Ferla, M. P. et al. Fragmenstein: predicting protein-ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology. Journal of Cheminformatics 17, 4 (2025).
13.
Ellmen, I., Schneider, C., Raybould, M. I. J. & Deane, C. M. Transformers trained on proteins can learn to attend to Euclidean distance.
Transactions on Machine Learning Research https://openreview.net/forum?id=mU59bDyqqv (2025).
14.
Ellmen, I., Raybould, M. I. J. & Deane, C. M. The protein universe in 3D. Nature Chemical Biology 21, 27–28 (2025).
15.
Durant, G., Boyles, F., Birchall, K., Marsden, B. & Deane, C. M. Robustly interrogating machine learning-based scoring functions: what are they learning?
Bioinformatics btaf040 (2025) doi:
10.1093/bioinformatics/btaf040.
16.
Brennan, P. J.
et al. Orthogonal IMiD-Degron Pairs Induce Selective Protein Degradation in Cells.
ACS Chemical Biology 5c00751 (2025) doi:
10.1021/acschembio.5c00751.
17.
Turnbull, O. M., Oglic, D., Croasdale-Wood, R. & Deane, C. M. p-IgGen: A Paired Antibody Generative Language Model. Bioinformatics 40, btae659 (2024).
18.
Theorell, J. et al. Ultrahigh frequencies of peripherally matured LGI1 & CASPR2-reactive B cells characterise encephalitis patient cerebrospinal fluid. Proceedings of the National Academy of Sciences USA 121, e2311049121 (2024).
19.
Sanchez-Garcia, R., Saur, M., Vargas, J., Poelking, C. & Deane, C. M. CESPED: a new benchmark for supervised particle pose estimation in Cryo-EM. Physical Review Research 8, 023245 (2024).
20.
Richardson, E. et al. Computational mining of B cell receptor repertoires reveals antigen-specific and convergent responses to Ebola vaccination. Frontiers in Immunology 15, 1383753 (2024).
21.
Riccabona, J. R. et al. Assessing AF2’s ability to predict structural ensembles of proteins. Structure 32, 2147–2159 (2024).
22.
Raybould, M. I. J., Turnbull, O. M., Suter, A., Guloglu, B. & Deane, C. M. Contextualising the developability risk of antibodies with lambda light chains using enhanced therapeutic antibody profiling. Communications Biology 7, 62 (2024).
23.
Raybould, M. I. J. et al. The Observed T cell receptor Space database enables paired-chain repertoire mining, coherence analysis and language modelling. Cell Reports 43, 114704 (2024).
24.
Outeiral, C. & Deane, C. Codon language embeddings provide strong signals for protein engineering. Nature Machine Intelligence 6, 170–179 (2024).
25.
Olsen, T. H., Moal, I. H. & Deane, C. M. Addressing the antibody germline bias and its effect on language models for improved antibody design. Bioinformatics 40, btae618 (2024).
26.
McMaster, B., Thorpe, C., Rossjohn, J., Deane, C. M. & Koohy, H. Quantifying conformational changes in the TCR:pMHC-I binding interface. Frontiers in Immunology 15, 1491656 (2024).
27.
McMaster, B., Thorpe, C., Ogg, G., Deane, C. M. & Koohy, H. Can AlphaFold’s breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity? Nature Methods 21, 766–776 (2024).
28.
Klarner, L., Rudner, T. G. J., Morris, G. M., Deane, C. M. & Teh, Y. W. Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design.
Proceedings of the 41st International Conference on Machine Learning (ICML 2024) https://arxiv.org/abs/2407.11942 (2024).
29.
Jiang, Y. et al. Comprehensive Overview of Bottom-up Proteomics using Mass Spectrometry. ACS Measurement Science Au 4, 338–417 (2024).
30.
Jiang, Y., Deane, C. M., Morris, G. M. & O’Brien, E. P. It is theoretically possible to avoid misfolding into non-covalent lasso entanglements using small molecule drugs. PLOS Computational Biology 20, 1–22 (2024).
31.
Hummer, A. M. & Deane, C. M. Designing stable humanized antibodies. Nature Biochemical Engineering 8, 3–4 (2024).
32.
Greenshields-Watson, A., Abanades, B. & Deane, C. M. Investigating the ability of deep learning-based structure prediction to extrapolate and/or enrich the set of antibody CDR canonical forms. Frontiers in Immunology 15, 1352703 (2024).
33.
Gordon, G. L., Raybould, M. I. J., Wong, A. & Deane, C. M. Prospects for the computational humanization of antibodies and nanobodies. Frontiers in Immunology 15, 1399438 (2024).
34.
Gordon, G. L. et al. PLAbDab-nano: a database of camelid and shark nanobodies from patents and literature. Nucleic Acids Research 53, gkae881 (2024).
35.
Fischer, K.
et al. Microfluidics-enabled fluorescence-activated cell sorting of single pathogen-specific antibody secreting cells for the rapid discovery of monoclonal antibodies.
Nature Biotechnology 10.1038/s41587-024-02346–5 (2024) doi:
10.1038/s41587-024-02346-5.
36.
Erasmus, M. F. et al. AIntibody: An experimentally-validated in silico antibody discovery design challenge. Nature Biotechnology 42, 1637–1642 (2024).
37.
Éliás, S. et al. Prediction of polyspecificity from antibody sequence data by machine learning. Frontiers in Bioinformatics 3, 1286883 (2024).
38.
Durant, G., Boyles, F., Birchall, K. & Deane, C. M. The future of machine learning for small-molecule drug discovery will be driven by data. Nature Computational Science 4, 735–743 (2024).
39.
Condado-Morales, I. et al. A comparative study of the developability of full-length antibodies, fragments, and bispecific formats reveals higher stability risks for engineered constructs. mAbs 16, 2403156 (2024).
40.
Chinery, L., Jeliazkov, J. R. & Deane, C. M. Humatch - fast, gene-specific joint humanisation of antibody heavy and light chains. mAbs 16, 2434121 (2024).
41.
Carbery, A., Buttenschoen, M., Skyner, R., von Delft, F. & Deane, C. M. Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures. Journal of Cheminformatics 16, 32 (2024).
42.
Abanades, B. et al. The Patent and Literature Antibody Database (PLAbDab): an evolving reference set of functionally diverse, literature-annotated antibody sequences and structures. Nucleic Acids Research 52, D545–D551 (2024).
43.
Wills, S. et al. Fragment Merging Using a Graph Database Samples Different Catalogue Space than Similarity Search. Journal of Chemical Information and Modeling 63, 3423–3437 (2023).
44.
Villanueva, E. et al. System-wide analysis of RNA and protein subcellular localization dynamics. Nature Methods 21, 60–71 (2023).
45.
Vales, S. et al. Discovery and pharmacophoric characterization of chemokine network inhibitors using phage-display, saturation mutagenesis and computational modelling. Nature Communications 14, 5763 (2023).
46.
Spoendlin, F. C. et al. Improved computational epitope profiling using structural models identifies a broader diversity of antibodies that bind to the same epitope. Frontiers in Molecular Biosciences 10, 1237621 (2023).
47.
Scantlebury, J. et al. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 63, 2960–2974 (2023).
48.
Richardson, E. et al. Characterisation of the immune repertoire of a humanised transgenic mouse through immunophenotyping and high-throughput sequencing. eLife 12, e81629 (2023).
49.
Raybould, M. I. J., Nissley, D. A., Kumar, S. & Deane, C. M. Computationally profiling peptide:MHC recognition by T-cell receptors and T-cell receptor-mimetic antibodies. Frontiers in Immunology 13, 1080596 (2023).
50.
Olsen, T. H., Abanades, B., Moal, I. H. & Deane, C. M. KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies. Scientific Reports 13, 11612 (2023).
51.
Mokaya, M. et al. Testing the Limits of SMILES-based De Novo Molecular Generation with Curriculum and Deep Reinforcement Learning. Nature Machine Intelligence 5, 386–394 (2023).
52.
Klarner, L. et al. Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions. Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 17176–17191 (2023).
53.
Hoerschinger, V. J. et al. PEP-Patch: Electrostatics in Protein–Protein Recognition, Specificity, and Antibody Developability. Journal of Chemical Information and Modelling 63, 6964–6971 (2023).
54.
Hadfield, T. E., Scantlebury, J. & Deane, C. M. Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding. Journal of Cheminformatics 15, 84 (2023).
55.
Guloglu, B. & Deane, C. M. Specific attributes of the VL domain influence both the structure and structural variability of CDR-H3 through steric effects. Frontiers in Immunology 14, 1223802 (2023).
56.
Gordon, G. L. et al. A comparison of the binding sites of antibodies and single-domain antibodies. Frontiers in Immunology 14, 1231623 (2023).
57.
Fernández-Quintero, M. L. et al. Challenges in antibody structure prediction. mAbs 15, 2175319 (2023).
58.
Dablander, M., Hanser, T., Lambiotte, R. & Morris, G. M. Exploring QSAR Models for Activity-Cliff Prediction. Journal of Cheminformatics 15, 47 (2023).
59.
Crook, O. M. et al. A linear transportation Lp distance for pattern recognition. Pattern Recognition 147, 110080 (2023).
60.
Crook, O. M., Chung, C. & Deane, C. M. A functional Bayesian model for hydrogen-deuterium exchange mass-spectrometry. Journal of Proteome Research 22, 2959–2972 (2023).
61.
Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chemical Science 15, 3130–3139 (2023).
62.
Boby, M. L. et al. Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 382, abo7201 (2023).
63.
Abanades, B. et al. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Communications Biology 6, 575 (2023).
64.
Wang, Y. et al. Peptide Centric Vβ Specific Germline Contacts Shape a Specialist T Cell Response. Frontiers in Immunology 13, 847092 (2022).
65.
Schneider, C., Raybould, M. I. J. & Deane, C. M. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Research 50, D1368–D1372 (2022).
66.
Sanchez-Garcia, R. et al. CoPriNet: Deep learning compound price prediction for use in de novo molecule generation and prioritization. Digital Discovery 2, 103–111 (2022).
67.
Raybould, M. I. J. & Deane, C. M. The Therapeutic Antibody Profiler for Computational Developability Assessment. Methods in Molecular Biology 23, 115–125 (2022).
68.
Pardo-Diaz, J., Poole, P. S., Beguerisse-Díaz, M., Deane, C. M. & Reinert, G. Generating weighted and thresholded gene coexpression networks using signed distance correlation. Network Science 10, 131–145 (2022).
69.
Pardo-Diaz, J., Beguerisse-Diaz, M., Poole, P. S., Deane, C. M. & Reinert, G. Extracting Information from Gene Coexpression Networks of Rhizobium leguminosarum. Journal of Computational Biology 27, 752–768 (2022).
70.
Outeiral, C., Nissley, D. A. & Deane, C. M. Current structure predictors are not learning the physics of protein folding. Bioinformatics 38, 1881–1887 (2022).
71.
Olsen, T. H., Moal, I. H. & Deane, C. M. AbLang: An antibody language model for completing antibody sequences. Bioinformatics Advances 2, vbac046 (2022).
72.
Meli, R., Morris, G. M. & Biggin, P. C. Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review. Frontiers in Bioinformatics 2, 885983 (2022).
73.
Lomize, A. L. et al. Membranome 3.0: Database of single-pass membrane proteins with AlphaFold models. Protein Science 31, e4318 (2022).
74.
Ko, K.-T. et al. Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies. Nature Communications 13, 5603 (2022).
75.
Khetan, R. et al. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. mAbs 14, 2020082 (2022).
76.
Hummer, A. M., Abanades, B. & Deane, C. M. Advances in computational structure-based antibody design. Current Opinion in Structural Biology 74, 102379 (2022).
77.
Hadfield, T. E. & Deane, C. M. AI in 3D compound design. Current Opinion in Structural Biology 73, 102326 (2022).
78.
Hadfield, T. E., Imrie, F., Merritt, A., Birchall, K. & Deane, C. M. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. Journal of Chemical Information and Modeling 62, 2280–2292 (2022).
79.
Goto, A., Rodriguez-Esteban, R., Scharf, S. H. & Morris, G. M. Understanding the genetics of viral drug resistance by integrating clinical data and mining of the scientific literature. Scientific Reports 12, 14476 (2022).
80.
Crook, O. M., Chung, C. & Deane, C. M. Empirical Bayes functional models for hydrogen deuterium exchange mass spectrometry. Communications Biology 5, 588 (2022).
81.
Crook, O. M., Chung, C. & Deane, C. M. Challenges and Opportunities for Bayesian Statistics in Proteomics. Journal of Proteome Research 21, 849–864 (2022).
82.
Chinery, L., Wahome, N., Moal, I. & Deane, C. M. Paragraph - Antibody paratope prediction using Graph Neural Networks with minimal feature vectors. Bioinformatics 39, btac732 (2022).
83.
Carbery, A., Skyner, R., von Delft, F. & Deane, C. M. Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries. Journal of Medicinal Chemistry 65, 11404–11413 (2022).
84.
Baddock, H. T. et al. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN–nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Research 50, 1484–1500 (2022).
85.
Abanades, B., Georges, G., Bujotzek, A. & Deane, C. M. ABlooper: Fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics 38, 1887–1880 (2022).
86.
Wong, W. K. et al. Ab-Ligity: Identifying sequence-dissimilar antibodies that bind to the same epitope. MAbs 13, 1873478 (2021).
87.
Schwarz, D. et al. Co-evolutionary distance predictions contain flexibility information. Bioinformatics 38, 65–72 (2021).
88.
Schneider, C., Buchanan, A., Taddese, B. & Deane, C. M. DLAB—Deep learning methods for structure-based virtual screening of antibodies. Bioinformatics 38, 377–383 (2021).
89.
Robinson, S. A. et al. Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Computational Biology 17, e1009675 (2021).
90.
Richardson, E. et al. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-Pertussis toxoid antibodies. MAbs 13, 1869406 (2021).
91.
Raybould, M. I. J., Kovaltsuk, A., Marks, C. & Deane, C. M. CoV-AbDab: the Coronavirus Antibody Database. Bioinformatics 37, 734–735 (2021).
92.
Raybould, M. I. J., Rees, A. R. & Deane, C. M. Current strategies for detecting functional convergence across B-cell receptor repertoires. MAbs 13, 1996732 (2021).
93.
Raybould, M. I. J. et al. Public Baseline and Shared Response Structures Support the Theory of Antibody Repertoire Functional Commonality. PLoS Computational Biology 17, e1008781 (2021).
94.
Pardo-Diaz, J. et al. Robust gene coexpression networks using signed distance correlation. Bioinformatics 37, 1982–1989 (2021).
95.
Outeiral, C. et al. Investigating the potential for a limited quantum speedup on protein lattice problems. New Journal of Physics 23, 103030 (2021).
96.
Olsen, T. H., Boyles, F. & Deane, C. M. OAS: A diverse database of cleaned, annotated and translated unpaired and paired antibody sequences. Protein Science 31, 141–146 (2021).
97.
Nissley, D. A., Carbery, A., Chonofsky, M. & Deane, C. M. Ribosome occupancy profiles are conserved between structurally and evolutionarily related yeast domains. Bioinformatics 37, 1853–1859 (2021).
98.
Mokaya, M. & Deane, C. M. A virtual drug-screening approach to conquer huge chemical libraries. Nature 601, 322–323 (2021).
99.
Meli, R., Anighoro, A., Bodkin, M. J., Morris, G. M. & Biggin, P. C. Learning protein-ligand binding affinity with atomic environment vectors. Journal of Cheminformatics 13, 59 (2021).
100.
Marks, C., Hummer, A. M., Chin, M. & Deane, C. M. Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformatics 37, 4041–4047 (2021).
101.
Macpherson, A. et al. The allosteric modulation of Complement C5 by knob domain peptides. eLife 10, e63586 (2021).
102.
Klimm, F., Deane, C. M. & Reinert, G. Hypergraphs for predicting essential genes using multiprotein complex data. Journal of Complex Networks 9, cnaa028 (2021).
103.
Imrie, F., Hadfield, T. E., Bradley, A. R. & Deane, C. M. Deep generative design with 3D pharmacophoric constraints. Chemical Science 12, 14577–14589 (2021).
104.
Imrie, F., Bradley, A. R. & Deane, M., Charlotte. Generating Property-Matched Decoy Molecules Using Deep Learning. Bioinformatics 37, 2134–2141 (2021).
105.
Ghraichy, M. et al. Different B cell subpopulations show distinct patterns in their IgH repertoire metrics. eLife 10, e73111 (2021).
106.
Chan, L., Morris, G. M. & Hutchison, G. R. Understanding Conformational Entropy in Small Molecules. Journal of Chemical Theory and Computation 17, 2099–2106 (2021).
107.
Chan, L., Hutchison, G. & Morris, G. M. Understanding Ring Puckering in Small Molecules and Cyclic Peptides. Journal of Chemical Information and Modeling 61, 743–755 (2021).
108.
Chan, H. T. H. et al. Discovery of SARS-CoV-2 Mpro Peptide Inhibitors from Modelling Substrate and Ligand Binding. Chemical Science 12, 13686–13703 (2021).
109.
Boyles, F., Deane, C. M. & Morris, G. M. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses. Journal of Chemical Information and Modeling 62, 5329–5341 (2021).
110.
Wong, W. K. et al. TCRBuilder: Multi-state T-cell receptor structure prediction. Bioinformatics 36, 3580–3581 (2020).
111.
Scantlebury, J., Brown, N., Von Delft, F. & Deane, C. M. Dataset Augmentation Allows Deep Learning-Based Virtual Screening To Better Generalise To Unseen Target Classes, And Highlight Important Binding Interactions. Journal of Chemical Information Modeling 60, 3722–3730 (2020).
112.
Raybould, M. I. J. et al. Thera-SAbDab: the Therapeutic Structural Antibody Database. Nucleic Acids Research 48, D383–D388 (2020).
113.
Outeiral, C. et al. The prospects of quantum computing in computational molecular biology. WIRES 11, e1481 (2020).
114.
Marks, C. & Deane, C. M. How repertoire data is changing antibody science. Journal of Biological Chemistry 295, 9823–9837 (2020).
115.
Kovaltsuk, A. et al. Structural Diversity of B-cell Receptor Repertoires along the B-cell Differentiation Axis in Humans and Mice. PLoS Computational Biology 16, e1007636 (2020).
116.
Klimm, F. et al. Functional module detection through integration of single-cell RNA sequencing data with protein-protein interaction networks. BMC Bioinformatics 21, 756 (2020).
117.
Imrie, F., Bradley, A. R., van der Schaar, M. & Deane, C. M. Deep Generative Models for 3D Linker Design. Journal of Chemical Information Modeling 60, 1983–1995 (2020).
118.
Ghraichy, M. et al. Maturation of Naïve and Antigen-experienced B-cell Receptor Repertoires with Age. Frontiers in Immunology 11, 1734 (2020).
119.
Galson, J. D. et al. Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures. Frontiers in Immunology 11, 605170 (2020).
120.
Chan, L., Hutchison, G. R. & Morris, G. M. BOKEI: Bayesian optimization using knowledge of correlated torsions and expected improvement for conformer generation. Physical Chemistry Chemical Physics 22, 5211–5219 (2020).
121.
Bozhilova, L. V., Pardo-Diaz, J., Reinert, G. & Deane, C. M. COGENT: evaluating the consistency of gene co-expression networks. Bioinformatics 37, 1928–1929 (2020).
122.
Wong, W. K., Leem, J. & Deane, C. M. Comparative analysis of the CDR loops of antigen receptors. Frontiers in Immunology 10, 2454 (2019).
123.
West, C. E., de Oliveira, S. H. P. & Deane, C. M. RFQAmodel: Random Forest Quality Assessment to identify a predicted protein structure in the correct fold. PLoS One 14, 1–16 (2019).
124.
Schwarz, D., Merget, B., Deane, C. M. & Fulle, S. Modeling conformational flexibility of kinases in inactive states. Proteins 87, 943–951 (2019).
125.
Raybould, M. I. J., Wong, W. K. & Deane, C. M. Antibody-antigen Complex Modelling in the Era of Immunoglobulin Repertoire Sequencing. Molecular Systems Design & Engineering 4, 679–688 (2019).
126.
Raybould, M. I. J. et al. Five Computational Developability Guidelines for Therapeutic Antibody Profiling. Proceedings of the National Academy of Sciences USA 116, 4025–4030 (2019).
127.
Ospina-Forero, L., Deane, C. M. & Reinert, G. Assessment of model fit via network comparison methods based on subgraph counts. Journal of Complex Networks 7, 226–253 (2019).
128.
Marks, C. & Deane, C. M. Increasing the accuracy of protein loop structure prediction with evolutionary constraints. Bioinformatics 35, 2585–2592 (2019).
129.
Krawczyk, K., Raybould, M. I. J., Kovaltsuk, A. & Deane, C. M. Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories. MAbs 11, 1197–1205 (2019).
130.
Knapp, B., van der Merwe, P. A., Dushek, O. & Deane, C. M. MHC binding affects the dynamics of different T-cell receptors in different ways. PLoS Computational Biology 15, 1–17 (2019).
131.
Ebejer, J.-P., Finn, P. W., Wong, W. K., Deane, C. M. & Morris, G. M. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening. Journal of Chemical Information and Modeling 59, 2600–2616 (2019).
132.
Demharter, S., Knapp, B., Deane, C. M. & Minary, P. HLA-DM stabilises the empty MHCII binding groove: A model using customised Natural Move Monte Carlo. Journal of Chemical Information and Modeling 59, 2894–2899 (2019).
133.
Chonofsky, M., de Oliveira, S. H. P., Krawczyk, K. & Deane, C. M. The evolution of contact prediction: Evidence that contact selection in statistical contact prediction is changing. Bioinformatics 36, 1750–1756 (2019).
134.
Chan, L., Hutchison, G. R. & Morris, G. M. Bayesian Optimization for Conformer Generation. Journal of Cheminformatics 11, 32 (2019).
135.
Bozhilova, L. V., Whitmore, A. V., Wray, J., Reinert, G. & Deane, C. M. Measuring rank robustness in scored protein interaction networks. BMC Bioinformatics 20, 446 (2019).
136.
Boyles, F., Deane, C. M. & Morris, G. M. Learning From The Ligand: Using Ligand-Based Features To Improve Binding Affinity Prediction. Bioinformatics 36, 758–764 (2019).
137.
Wong, W. K. et al. SCALOP: sequence-based antibody canonical loop structure annotation. Bioinformatics 35, 1774–1776 (2018).
138.
Wegner, A. E., Ospina-Forero, L., Gaunt, R. E., Deane, C. M. & Reinert, G. Identifying networks with common organizational principles. Journal of Complex Networks 6, 887–913 (2018).
139.
Marks, C., Shi, J. & Deane, C. M. Predicting loop conformational ensembles. Bioinformatics 34, 949–956 (2018).
140.
Mardia, K. V., Sriram, K. & Deane, C. M. A statistical model for helices with applications. Biometrics 74, 845–854 (2018).
141.
Leem, J., Georges, G., Shi, J. & Deane, C. M. Antibody side chain conformations are position-dependent. Proteins: Structure, Function, and Bioinformatics 86, 383–392 (2018).
142.
Krawczyk, K. et al. Structurally Mapping Antibody Repertoires. Frontiers in Immunology 9, 1698 (2018).
143.
Krawczyk, K., Demharter, S., Knapp, B., Deane, C. M. & Minary, P. In silico structural modeling of multiple epigenetic marks on DNA. Bioinformatics 34, 41–48 (2018).
144.
Kovaltsuk, A. et al. Observed Antibody Space: a resource for data mining next generation sequencing of antibody repertoires. Journal of Immunology 201, 2502–2509 (2018).
145.
Kovaltsuk, A., Krawczyk, K., Kelm, S., Snowden, J. & Deane, C. M. Filtering Next-Generation Sequencing of the Ig Gene Repertoire Data Using Antibody Structural Information. Journal of Immunology 201, 3694–3704 (2018).
146.
Knapp, B., Ospina, L. & Deane, C. M. Avoiding false positive conclusions in molecular simulation: the importance of replicas. Journal of Chemical Theory and Computation 14, 6127–6138 (2018).
147.
Knapp, B. et al. pyHVis3D: Visualising Molecular Simulation deduced H-bond networks in 3D: Application to T-cell receptor interactions. Bioinformatics 34, 1941–1943 (2018).
148.
Imrie, F., Bradley, A. R., van der Schaar, M. & Deane, C. M. Protein Family-specific Models using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data. Journal of Chemical Information and Modeling 58, 2319–2330 (2018).
149.
de Oliveira, S. H. P. & Deane, C. M. Combining co-evolution and secondary structure prediction to improve fragment library generation. Bioinformatics 34, 2219–2227 (2018).
150.
de Oliveira, S. H. P., Law, E. C., Shi, J. & Deane, C. M. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction. Bioinformatics 34, 1132–1140 (2018).
151.
Regep, C., Georges, G., Shi, J., Popovic, B. & Deane, C. M. The H3 loop of antibodies shows unique structural characteristics. Proteins: Structure, Function, and Bioinformatics 85, 1311–1318 (2017).
152.
Pearce, N. M. et al. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Nature Communications 8, 15123 (2017).
153.
Pearce, N. M. et al. Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer new chemical opportunities and reveal cryptic binding sites. Structural Dynamics 4, 32104 (2017).
154.
Parks, T. et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nature Communications 8, (2017).
155.
Marks, C. et al. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. Bioinformatics 33, 1346–1353 (2017).
156.
Marks, C. & Deane, C. M. Antibody H3 Structure Prediction. Computional and Structural Biotechnology Journal 15, 222–231 (2017).
157.
Luecken, M. D. et al. CommWalker: Correctly Evaluating Modules in Molecular Networks in Light of Annotation Bias. Bioinformatics 34, 994–1000 (2017).
158.
Leem, J., de Oliveira, S. H. P., Krawczyk, K. & Deane, C. M. STCRDab: the structural T-cell receptor database. Nucleic Acids Research 46, D406–D412 (2017).
159.
Krawczyk, K., Dunbar, J. & Deane, C. M. Computational Tools for Aiding Rational Antibody Design. Methods in Molecular Biology 1529, 399–416 (2017).
160.
Kovaltsuk, A. et al. How B-Cell Receptor Repertoire Sequencing Can Be Enriched with Structural Antibody Data. Frontiers in Immunology 8, 1753 (2017).
161.
Knapp, B., Dunbar, J., Alcala, M. & Deane, C. M. Variable Regions of Antibodies and T-Cell Receptors May Not Be Sufficient in Molecular Simulations Investigating Binding. Journal of Chemical Theory and Computation 13, 3097–3105 (2017).
162.
Demharter, S. et al. Ten simple rules for surviving an interdisciplinary PhD. PLOS Computational Biology 13, e1005512 (2017).
163.
Deane, C. M. & Vásquez, M. Developability of Biotherapeutics: Computational Approaches . Edited by Sandeep Kumar and Satish K. Singh. MAbs 9, 12–14 (2017).
164.
de Oliveira, S. H. P., Shi, J. & Deane, C. M. Comparing co-evolution methods and their application to template-free protein structure prediction. Bioinformatics 33, 373–381 (2017).
165.
de Oliveira, S. & Deane, C. Co-evolution techniques are reshaping the way we do structural bioinformatics. F1000Research 6, 1224 (2017).
166.
Chen, J. W. C. et al. Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the gamma-tubulin ring complex to the mitotic spindle. Biology open 6, 654–663 (2017).
167.
Zhang, H. et al. The contribution of major histocompatibility complex contacts to the affinity and kinetics of T cell receptor binding. Scientific Reports 6, 35326 (2016).
168.
Nowak, J. et al. Length-independent structural similarities enrich the antibody CDR canonical class model. MAbs 8, 751–760 (2016).
169.
Leem, J., Dunbar, J., Georges, G., Shi, J. & Deane, C. M. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8, 1259–1268 (2016).
170.
Law, E. C., Wilman, H. R., Kelm, S., Shi, J. & Deane, C. M. Examining the Conservation of Kinks in Alpha Helices. PLoS One 11, e0157553 (2016).
171.
Krawczyk, K., Sim, A. Y. L., Knapp, B., Deane, C. M. & Minary, P. Tertiary Element Interaction in HIV-1 TAR. J. Chem. Inf. Model. 56, 1746–1754 (2016).
172.
Knapp, B., Demharter, S., Deane, C. M. & Minary, P. Exploring peptide/MHC detachment processes using Hierarchical Natural Move Monte Carlo. Bioinformatics 32, 181–186 (2016).
173.
Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J.-C. & Deane, C. M. Progress and challenges in predicting protein interfaces. Briefings in Bioinformatics 17, 117–131 (2016).
174.
Dunbar, J. et al. SAbPred: a structure-based antibody prediction server. Nucleic Acids Research 44, W474–W478 (2016).
175.
Dunbar, J. & Deane, C. M. ANARCI: Antigen receptor numbering and receptor classification. Bioinformatics 32, 298–300 (2016).
176.
Demharter, S., Knapp, B., Deane, C. M. & Minary, P. Modeling Functional Motions of Biological Systems by Customized Natural Moves. Biophysical Journal 111, 710–721 (2016).
177.
Ali, W., Wegner, A. E., Gaunt, R. E., Deane, C. M. & Reinert, G. Comparison of large networks with sub-sampling strategies. Scientific Reports 6, 28955 (2016).
178.
Wan, S., Knapp, B., Wright, D. W., Deane, C. M. & Coveney, P. V. Rapid, Precise, and Reproducible Prediction of Peptide.MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. Journal of Chemical Theory and Computation 11, 3346–3356 (2015).
179.
Rogala, K. B. et al. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. eLife 4, e07410 (2015).
180.
Palumbo, V. et al. Misato Controls Mitotic Microtubule Generation by Stabilizing the Tubulin Chaperone Protein-1 Complex. Current Biology 25, 1777–1783 (2015).
181.
Knapp, B., Demharter, S., Esmaielbeiki, R. & Deane, C. M. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. Briefings in Bioinformatics 16, 1035–1044 (2015).
183.
Knapp, B. et al. Ten Simple Rules for a Successful Cross-Disciplinary Collaboration. PLoS Computational Biology 11, e1004214 (2015).
184.
Edwards, H. & Deane, C. M. Structural Bridges through Fold Space. PLoS Computational Biology 11, e1004466 (2015).
185.
de Oliveira, S. H. P., Shi, J. & Deane, C. M. Building a Better Fragment Library for De Novo Protein Structure Prediction. PLoS One 10, e0123998 (2015).
186.
Bujotzek, A. et al. Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83, 681–695 (2015).
187.
Bradley, A. R. et al. WONKA: objective novel complex analysis for ensembles of protein-ligand structures. Journal of Computer-Aided Molecular Design 29, 963–973 (2015).
188.
Alexander, L. T. et al. Type II Inhibitors Targeting CDK2. ACS Chemical Biology 10, 2116–2125 (2015).
189.
Wilman, H. R., Shi, J. & Deane, C. M. Helix kinks are equally prevalent in soluble and membrane proteins. Proteins 82, 1960–1970 (2014).
190.
Wilman, H. R., Ebejer, J.-P., Shi, J., Deane, C. M. & Knapp, B. Crowdsourcing Yields a New Standard for Kinks in Protein Helices. Journal of Chemical Information and Modeling 54, 2585–2593 (2014).
191.
Osborne, J. M. et al. Ten Simple Rules for Effective Computational Research. PLoS Computational Biology 10, e1003506 (2014).
192.
Krawczyk, K., Liu, X., Baker, T., Shi, J. & Deane, C. M. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30, 2288–2294 (2014).
193.
Knapp, B., Dunbar, J. & Deane, C. M. Large Scale Characterization of the LC13 TCR and HLA-B8 Structural Landscape in Reaction to 172 Altered Peptide Ligands: A Molecular Dynamics Simulation Study. PLoS Computational Biology 10, e1003748 (2014).
194.
Kelm, S. et al. Fragment-based modeling of membrane protein loops: successes, failures, and prospects for the future. Proteins 82, 175–186 (2014).
195.
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Research D42, D1140–D1146 (2014).
196.
Dunbar, J., Knapp, B., Fuchs, A., Shi, J. & Deane, C. M. Examining Variable Domain Orientations in Antigen Receptors Gives Insight into TCR-Like Antibody Design. PLoS Computational Biology 10, e1003852 (2014).
197.
Dien, H., Deane, C. M. & Knapp, B. Gro2mat: A package to efficiently read gromacs output in MATLAB. Journal of Computational Chemistry 35, 1528–1531 (2014).
198.
Bradley, A. R., Wall, I. D., Green, D. V. S., Deane, C. M. & Marsden, B. D. OOMMPPAA: A Tool To Aid Directed Synthesis by the Combined Analysis of Activity and Structural Data. Journal of Chemical Information and Modeling 54, 2636–2646 (2014).
199.
Ali, W., Rito, T., Reinert, G., Sun, F. & Deane, C. M. Alignment-free protein interaction network comparison. Bioinformatics 30, i430–i437 (2014).
200.
Zheng, S. et al. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Molecular Cell 52, 37–51 (2013).
201.
Luo, Q., Hamer, R., Reinert, G. & Deane, C. M. Local Network Patterns in Protein-Protein Interfaces. PLoS One 8, e57031 (2013).
202.
Lori, C. et al. Effect of Single Amino Acid Substitution Observed in Cancer on Pim-1 Kinase Thermodynamic Stability and Structure. PLoS One 8, e64824 (2013).
203.
Krawczyk, K., Baker, T., Shi, J. & Deane, C. M. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Engineering Design and Selection 26, 621–629 (2013).
204.
Knapp, B., Dorffner, G. & Schreiner, W. Early Relaxation Dynamics in the LC 13 T Cell Receptor in Reaction to 172 Altered Peptide Ligands: A Molecular Dynamics Simulation Study. PLoS One 8, e64464 (2013).
205.
Kelm, Sebastian., Choi, Yoonjoo. & Deane, C. M. Protein Modelling and Structural Prediction. Springer Handbook in Bio-/Neuro-informatics (Springer Science & Business Media, 2013).
206.
Hischenhuber, B. et al. Differential Geometric Analysis of Alterations in MH Alpha$-Helices. Journal of Computational Chemistry 34, 1862–1879 (2013).
207.
Hill, J. R. & Deane, C. M. MP-T: improving membrane protein alignment for structure prediction. Bioinformatics 29, 54–61 (2013).
208.
Harrington, L., Cheley, S., Alexander, L. T., Knapp, S. & Bayley, H. Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. Proceedings of the National Academy of Sciences USA 110, E4417—-E4426 (2013).
209.
Edwards, H., Abeln, S. & Deane, C. M. Exploring Fold Space Preferences of New-born and Ancient Protein Superfamilies. PLoS Computational Biology 9, e1003325 (2013).
210.
Ebejer, J.-P., Hill, J. R., Kelm, S., Shi, J. & Deane, C. M. Memoir: template-based structure prediction for membrane proteins. Nucleic Acids Research W1, W379–W383 (2013).
211.
Ebejer, J.-P., Fulle, S., Morris, G. M. & Finn, P. W. The emerging role of cloud computing in molecular modelling. Journal of Molecular Graphics Modeling 44, 177–187 (2013).
212.
Dunbar, J., Fuchs, A., Shi, J. & Deane, C. M. ABangle: characterising the VH–VL orientation in antibodies. Protein Design Selection & Engineering 26, 611–620 (2013).
213.
Choi, Y., Agarwal, S. & Deane, C. M. How long is a piece of loop? PeerJ 1, e1 (2013).
214.
Withers-Martinez, C. et al. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. International Journal of Parasitology 42, 597–612 (2012).
215.
Rito, T., Deane, C. M. & Reinert, G. The importance of age and high degree, in protein-protein interaction networks. Journal of Computational Biology 19, 785–795 (2012).
216.
Pawelczyk, S. et al. Predicting Inter-Species Cross-Talk in Two-Component Signalling Systems. PLoS One 7, e37737 (2012).
217.
Mann, M., Saunders, R., Smith, C., Backofen, R. & Deane, C. M. Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains. Advances in Bioinformatics 2012, e148045 (2012).
218.
Lewis, A. C. F., Jones, N. S., Porter, M. A. & Deane, C. M. What Evidence Is There for the Homology of Protein-Protein Interactions? PLoS Computational Biology 8, e1002645 (2012).
219.
Kashir, J. et al. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility. Human Reproduction 27, 222–231 (2012).
220.
Gomes, M., Hamer, R., Reinert, G. & Deane, C. M. Mutual information and variants for protein domain-domain contact prediction. BMC Research Notes 5, 472 (2012).
221.
Ebejer, J.-P., Morris, G. M. & Deane, C. M. Freely Available Conformer Generation Methods: How Good Are They? Journal of Chemical Information and Modeling 52, 1146–1158 (2012).
222.
Saunders, R., Mann, M. & Deane, C. M. Signatures of co-translational folding. Biotechnology Journal 6, 742–751 (2011).
223.
Hill, J. R., Kelm, S., Shi, J. & Deane, C. M. Environment specific substitution tables improve membrane protein alignment. Bioinformatics 27, i15-23 (2011).
224.
Deane, C. M. & Saunders, R. The imprint of codons on protein structure. Biotechnology Journal 6, 641–649 (2011).
225.
Choi, Y. & Deane, C. M. Predicting antibody complementarity determining region structures without classification. Molecular Biosystems 7, 3327–3334 (2011).
226.
Ali, W., M., D. C. & Reinert, G. Protein Interaction Networks and Their Statistical Analysis. Handbook in Statistical Systems Biology (John Wiley & Sons, 2011).
227.
Saunders, R. & Deane, C. M. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Research 38, 6719–6728 (2010).
228.
Saunders, R. & Deane, C. M. Protein structure prediction begins well but ends badly. Proteins 78, 1282–1290 (2010).
229.
Rito, T., Wang, Z., Deane, C. M. & Reinert, G. How threshold behaviour affects the use of subgraphs for network comparison. Bioinformatics 26, i611—-i617 (2010).
230.
Lewis, A. C. F., Saeed, R. & Deane, C. M. Predicting protein-protein interactions in the context of protein evolution. Molecular Biosystems 6, 55–64 (2010).
231.
Lewis, A. C. F., Jones, N. S., Porter, M. A. & Deane, C. M. The function of communities in protein interaction networks at multiple scales. BMC Systems Biology 4, 100 (2010).
232.
Lance, B. K., Deane, C. M. & Wood, G. R. Exploring the potential of template-based modelling. Bioinformatics 26, 1849–1856 (2010).
233.
Kelm, S., Shi, J. & Deane, C. M. MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26, 2833–2840 (2010).
234.
Hamer, R., Luo, Q., Armitage, J. P., Reinert, G. & Deane, C. M. i-Patch: interprotein contact prediction using local network information. Proteins 78, 2781–2797 (2010).
235.
Hamer, R., Chen, P.-Y., Armitage, J. P., Reinert, G. & Deane, C. M. Deciphering chemotaxis pathways using cross species comparisons. BMC Systems Biology 4, 3 (2010).
236.
Ellis, J. J., Huard, F. P. E., Deane, C. M., Srivastava, S. & Wood, G. R. Directionality in protein fold prediction. BMC Bioinformatics 11, 172 (2010).
237.
Choi, Y. & Deane, C. M. FREAD revisited: Accurate loop structure prediction using a database search algorithm. Proteins 78, 1431–1440 (2010).
238.
Ali, W. & Deane, C. M. Evolutionary analysis reveals low coverage as the major challenge for protein interaction network alignment. Molecular Biosystems 6, 2296–2304 (2010).
239.
Agarwal, S., Deane, C. M., Porter, M. A. & Jones, N. S. Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. PLoS Computational Biology 6, e1000817 (2010).
240.
Patel, P. C., Fisher, K. H., Yang, E. C. C., Deane, C. M. & Harrison, R. E. Proteomic Analysis of Microtubule-associated Proteins during Macrophage Activation. Molecular and Cellular Proteomics 8, 2500–2514 (2009).
241.
Kelm, S., Shi, J. & Deane, C. M. iMembrane: homology-based membrane-insertion of proteins. Bioinformatics 25, 1086–1088 (2009).
242.
Heytens, E. et al. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Human Reproduction 24, 2417–2428 (2009).
243.
Ali, W. & Deane, C. M. Functionally guided alignment of protein interaction networks for module detection. Bioinformatics 25, 3166–3173 (2009).
244.
Valeyev, N. V., Downing, A. K., Sondek, J. & Deane, C. Electrostatic and functional analysis of the seven-bladed WD beta-propellers. Evolutionary Bioinformatics 4, 203–216 (2008).
245.
Saeed, R. & Deane, C. An assessment of the uses of homologous interactions. Bioinformatics 24, 689–695 (2008).
246.
Mann, M., Maticzka, D., Saunders, R. & Backofen, R. Classifying proteinlike sequences in arbitrary lattice protein models using LatPack. HFSP Journal 2, 396–404 (2008).
247.
Hughes, J. R. et al. A Microtubule Interactome: Complexes with Roles in Cell Cycle and Mitosis. PLoS Biology 6, (2008).
248.
Fisher, K. H., Deane, C. M. & Wakefield, J. G. The functional domain grouping of microtubule associated proteins. Communicative and Integrative Biology 1, 47–50 (2008).
249.
Chen, P.-Y., Deane, C. M. & Reinert, G. Predicting and validating protein interactions using network structure. PLoS Computational Biology 4, e1000118 (2008).
250.
Deane, C. M., Dong, M., Huard, F. P. E., Lance, B. K. & Wood, G. R. Cotranslational protein folding–fact or fiction? Bioinformatics 23, i142-8 (2007).
251.
Chen, P.-Y., Deane, C. M. & Reinert, G. A statistical approach using network structure in the prediction of protein characteristics. Bioinformatics 23, 2314–2321 (2007).
252.
Abeln, S., Teubner, C. & Deane, C. M. Using Phylogeny to Improve Genome-Wide Distant Homology Recognition. PLoS Computational Biology 3, (2007).
253.
Abeln, S. & Deane, C. Linking evolution of protein structures through fragments. BMC Systems Biology 1, S12 (2007).
254.
Saeed, R. & Deane, C. M. Protein protein interactions, evolutionary rate, abundance and age. BMC Bioinformatics 7, 128 (2006).
255.
Huard, F. P. E., Deane, C. M. & Wood, G. R. Modelling sequential protein folding under kinetic control. Bioinformatics 22, e203–e210 (2006).
256.
Winstanley, H. F., Abeln, S. & Deane, C. M. How old is your fold? Bioinformatics 21, i449—-458 (2005).
257.
Abeln, S. & Deane, C. M. Fold usage on genomes and protein fold evolution. Proteins 60, 690–700 (2005).
258.
O’Leary, J. M. et al. Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA. Journal of Biological Chemistry 279, 53857–53866 (2004).
259.
Deane, C. M., Salwiński, Ł., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. proteomics MCP 1, 349–356 (2002).
260.
Williams, M. G. et al. Sequence-structure homology recognition by iterative alignment refinement and comparative modeling. Proteins Suppl 5, 92–97 (2001).
261.
Deane, C. M. & Lummis, S. C. R. The Role and Predicted Propensity of Conserved Proline Residues in the 5-HT3 Receptor. J. Biol. Chem. 276, 37962–37966 (2001).
262.
Deane, C. M., Kaas, Q. & Blundell, T. L. SCORE: predicting the core of protein models. Bioinformatics 17, 541–550 (2001).
263.
Deane, C. M. & Blundell, T. L. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci. A Publ. Protein Soc. 10, 599–612 (2001).
264.
Burke, D. F. & Deane, C. M. Improved protein loop prediction from sequence alone. Protein Eng. 14, 473–478 (2001).
265.
Deane, C. M. & Blundell, T. L. A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins 40, 135–144 (2000).
266.
Burke, D. F., Deane, C. M. & Blundell, T. L. Browsing the SLoop database of structurally classified loops connecting elements of protein secondary structure. Bioinformatics 16, 513–519 (2000).
267.
Deane, C. M., Allen, F. H., Taylor, R. & Blundell, T. L. Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid. Protein Eng. 12, 1025–1028 (1999).
268.
Burke, D. F. et al. An iterative structure-assisted approach to sequence alignment and comparative modeling. Proteins Suppl 3, 55–60 (1999).
269.
Sowdhamini, R. et al. Protein three-dimensional structural databases: domains, structurally aligned homologues and superfamilies. Acta Crystallogr. D. Biol. Crystallogr. 54, 1168–1177 (1998).
270.
Mizuguchi, K., Deane, C. M., Blundell, T. L., Johnson, M. S. & Overington, J. P. JOY: protein sequence-structure representation and analysis. Bioinformatics 14, 617–623 (1998).
271.
Mizuguchi, K., Deane, C. M., Blundell, T. L. & Overington, J. P. HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci. 7, 2469–2471 (1998).
272.
Deane, C. M., Kroemer, R. T. & Richards, W. G. A structural model of the human thrombopoietin receptor complex. J. Mol. Graph. Model. 15, 170–178, 185–188 (1997).